This page shows some of the basics of making Feynman diagrams in LaTeX with the feynMF
/feynMP
package. You will also find many examples relevant for our group. More information can be found at:
MetaPost
, check out the MetaPost manual (J.D. Hobby, 2017), this paper, this tutorial and this section;
The most basic example is electron - muon scattering with a photon propagator. Use \fmfleft
for creating and labeling the external vertices of incoming legs and \fmfright
for outgoing ones. Connect the electron line to the vertices and create internal ones with \fmf{fermion}
. Then connect a photon \fmf{photon}
to the internal vertices.
\begin{fmffile}{feyngraph} \begin{fmfgraph}(110,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{i2,v2,o2} \fmf{photon}{v1,v2} \end{fmfgraph} \end{fmffile}
Use the label
option of \fmf
to name a leg and the command \fmflabel
(or \fmfv
) to label vertices.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmflabel{$\mu^-$}{i1} \fmflabel{$e^-$}{i2} \fmflabel{$\mu^-$}{o1} \fmflabel{$e^-$}{o2} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{i2,v2,o2} \fmf{photon,label=$\gamma$}{v1,v2} \end{fmfgraph*} \end{fmffile}
Checkout the feynMF manual for all the available line styles, line options, vertex options and all their parameters.
(Tables from the manual.)
To put a dot on a vertex, you can use these two equivalent options:
\fmfdot{v} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4}{v} \fmfv{decor.shape=circle,decor.filled=full,decor.size=2thick}{v}
To make blobs for generic, effective field theory or beyond the standard model processes:
\fmfblob{10}{v} \fmfv{decor.shape=circle,decor.filled=shaded,decor.size=10}{v}
To emphasize some legs, use the option foreground
where you can set the color with a normalized decimal RBG value separated by two commas foreground=(<red>,,<blue>,,<green>)
. You can easily find websites like this one to get the RBG color code from some image, or with a color wheel this one, or you can use the DigitalColor Meter application of Max OS X (in Applications/Utilities
).
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion,foreground=(1,,0.1,,0.1)}{i1,v1,o1} \fmf{fermion}{i2,v2,o2} \fmf{photon}{v1,v2} \end{fmfgraph*} \end{fmffile}
Furthermore you can emphasize some leg with the width
option of \fmf
, or use \fmfpen{thick}
to make the whole diagram thick (default setting is thin
).
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion,width=2}{i1,v1,o1} \fmf{fermion}{i2,v2,o2} \fmf{photon}{v1,v2} \end{fmfgraph*} \end{fmffile}
You can control a leg's length and its pull on vertices and other legs by changing \fmf
's tension
option from the default value of 1.
\begin{fmffile}{feyngraph} \begin{fmfgraph}(110,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion}{i1,v1} \fmf{fermion,tension=2}{v1,o1} % make shorter \fmf{fermion,tension=2}{i2,v2} % make shorter \fmf{fermion}{v2,o2} \fmf{photon,tension=0.4}{v1,v2} % make longer \end{fmfgraph} \end{fmffile}
Using \fmffreeze
and drawing invisible lines with \fmf{phantom}
can also help to control the shape. By drawing a phantom line with some well-chosen tension, you can “pull” vertices in other directions. By freezing after drawing part of your diagram, you prevent these new lines from pulling it out of the desired shape.
As documented in the feynMF manual, the external vertices are by default (or explicitly with \fmfcurved
) positioned on a curve:
Left to right: \fmfbottom
, \fmfleft
, \fmfsurround
, \fmftop
and \fmfright
.
If you prefer the external vertices aligned on a straight box, use \fmfstraight
:
(Images from the manual.)
How can you have more control over the line length and vertex positions? Consider making a diagram of a Higgs boson decaying into two W bosons (H → WW → 4f) without the use of tension
:
\begin{fmffile}{feyngraph} \begin{fmfgraph}(150,150) \fmfleft{i1} \fmfright{o1,o2,o3,o4} \fmf{dashes}{i1,v1} \fmf{boson}{v1,v21} \fmf{boson}{v1,v22} \fmf{fermion}{o1,v21,o2} \fmf{fermion}{o3,v22,o4} \end{fmfgraph} \end{fmffile}
This was pretty straightforward, but perhaps you prefer the fermion lines to be equal in length. This can be achieved by drawing help lines, which pull back the vertices of the W boson decays. Normally you would use the invisible phantom
lines, but let's start with the visible dashes
:
Notice the endpoints of the outgoing fermion lines are not horizontally aligned. This is solved by including the command \fmfstraight
:
Use \fmffreeze
to freeze this part of the diagram. This will prevent the next lines we add from ruining this balance. Now put back the rest (H → WW).
Now simple use phantom
to make the help lines invisible. Note the use of tension, which needs to be fine-tuned:
\begin{fmffile}{feyngraph} \begin{fmfgraph}(150,150) \fmfstraight \fmfleft{i0,i1,i2} \fmfright{o1,o2,o3,o4} % outgoing fermions \fmf{fermion}{o1,v21,o2} \fmf{fermion}{o3,v22,o4} % phantoms to pull back fermion lines \fmf{phantom}{i0,v21} \fmf{phantom,tension=0.5}{v21,v22} \fmf{phantom}{i2,v22} \fmffreeze % H -> WW \fmf{dashes,tension=1.5}{i1,v1} \fmf{boson}{v1,v21} \fmf{boson}{v1,v22} \end{fmfgraph} \end{fmffile}
If you do not like puzzling with phantom lines and tension, you could force the vertex at an exact location using \fmfforce{(0.4w,0.7h)}{v}
, which places the vertex v
at the x position that is 40% of the width from the left, and at the y position that is 70% of the height from the bottom. (Note however that the feynMF manual states it should be used as a last resort only.) The alternative is to use intermediate mode with MetaPost which is explained in a section below.
It is also possible to use \fmfshift
to shift vertices. This can be used for outgoing point created with \fmfleft
etc., but also internal vertices after they have been frozen with \fmffreeze
.
\begin{fmffile}{feyngraph} \begin{fmfgraph}(150,150) \fmfstraight \fmfleft{i} \fmfright{o1,o2,o3,o4} % force vertex locations \fmfforce{(0.40w,0.50h)}{v} \fmfforce{(0.68w,0.20h)}{v1} \fmfforce{(0.68w,0.80h)}{v2} % H -> WW \fmf{dashes,tension=1.5}{i,v} \fmf{boson}{v,v1} \fmf{boson}{v,v2} % outgoing fermions \fmf{fermion}{o1,v1,o2} \fmf{fermion}{o3,v2,o4} \end{fmfgraph} \end{fmffile}
The easiest and most economic way to add momentum arrows next to a leg is by using the following predefined command in the preamble (source):
\newcommand{\marrow}[5]{% \fmfcmd{style_def marrow#1 expr p = drawarrow subpath (1/4, 3/4) of p shifted 6 #2 withpen pencircle scaled 0.4; label.#3(btex #4 etex, point 0.5 of p shifted 6 #2); enddef;} \fmf{marrow#1,tension=0}{#5}}
This predefined command \marrow
makes use of \fmfcmd
which draws an fermion line (plain line with arrow) in MetaPost
. \marrow
needs five parameters (#1
–#5
):
down
, up
;bot
, top
;\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmflabel{$e^-$}{i2} \fmflabel{$e^-$}{o2} \fmflabel{$\mu^-$}{i1} \fmflabel{$\mu^-$}{o1} \fmf{fermion}{i2,v2,o2} \marrow{ea}{ up }{top}{$p_1$}{i2,v2} \marrow{eb}{down}{bot}{$p_3$}{v2,o2} \fmf{fermion}{i1,v1,o1} \marrow{ma}{down}{bot}{$p_2$}{i1,v1} \marrow{mb}{ up }{top}{$p_4$}{v1,o1} \fmf{photon,label=$\gamma$}{v2,v1} \end{fmfgraph*} \end{fmffile}
Lines can be bent by simply adding right
or left
. Here is for example the one-loop correction to the electron-photon vertex to compute the anomalous magnetic momentum:
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(70,100) \fmfleft{f2,f1} \fmfright{p} % outgoing photon \fmf{boson,l.s=left,t=0.8}{p,v} \fmf{fermion}{f2,v1} \fmf{plain,t=1.5}{v1,v,v2} \fmf{fermion}{v2,f1} \fmfv{l.a=165,l=e$^-$}{f1} % outcoming electron \fmfv{l.a=-165,l=e$^-$}{f2} % incoming electron \fmffreeze \fmf{boson,left}{v1,v2} % bend photon line to the left \end{fmfgraph*} \end{fmffile}
More examples can be found below in the sections on Higgs mass corrections and Penguin diagrams.
If you don't like puzzling with phantom
lines and tension, you can use \fmfforce
as explained in a section above. You can gain even greater control by using feynMP
's “intermediate mode” to use MetaPost
more directly. \fmfipairs
and \fmfiequ
gives the ability to exactly position vertices, and \fmfi
allow to draw straight and curved lines between these points.
The next level is executing MetaPost
commands directly with \fmfcmd
.
You can learn more about MetaPost
in the manual or this tutorial. The feynmf manual and this paper contain some examples, and the author also put some advanced ones on this webpage. Examples on this wiki page that make use of MetaPost
intermediately of directly are:
Vertices in the intermediate mode are declared as MetaPost
pairs with \fmfpair
. Then you can set them in several different ways: explicitly with some coordinates, along a path between two other pairs, sum of two pairs, … “feynMF
vertices” declared with \fmfleft
etc. can be accessed in MetaPost
by prepending its name with two underscores; then they can be converted to a MetaPost
pair using the vloc
function. These different methods are shown below.
Note there are already some predefined points like origin
and the cardinal directions ne
(northeast), nw
(northwest), se
(southeast) and sw
(southwest) for each corner.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,120) % predefined points (MetaPost pairs) \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=ne}{ne} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=nw}{nw} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=se}{se} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=sw,l.a=140}{sw} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=origin,l.a=-140}{origin} % new feynMF vertices \fmftop{t} \fmfbottom{b} % new MetaPost pairs \fmfipair{o,i,m,d,d',x,x',t'} \fmfiequ{o}{(0,0)} \fmfiequ{i}{(1w,1h)} \fmfiequ{m}{0.5[nw,sw]} \fmfiequ{d}{0.33[ne,sw]} \fmfiequ{d'}{0.33[sw,ne]} \fmfiequ{ypart(x)}{ypart(m)} \fmfiequ{xpart(x)}{xpart(.5[ne,se])} \fmfiequ{x'}{m+(.2w,.2h)} \fmfiequ{t'}{vloc(__t)} % new points labels \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=o,l.a=40}{o} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=i,l.a=-40}{i} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=m}{m} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=d}{d} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=d'}{d'} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=x}{x} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=x'}{x'} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=t'}{t'} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=b}{vloc(__b)} \end{fmfgraph*} \end{fmffile}
How do you connect vertices? Here is a straightforward example with MetaPost
pairs using \fmfi
:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,50) \fmfipair{i,o} \fmfiequ{i}{(0,0)} \fmfiequ{o}{(1w,0)} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=i,l.a=180}{i} \fmfiv{d.sh=circle,d.f=1,d.si=5pt,l=o,l.a=0}{o} \fmfi{fermion,l=path between MetaPost pairs,l.s=left}{i--o} \end{fmfgraph*} \end{fmffile}
You can now easily shift or rotate these paths:
\fmfi{fermion}{(i--o) shifted(10,-20)}
\fmfi{fermion}{(i--o) rotatedaround(i,45)}
An equivalent way is by using a vpath
between two feynMF
vertices by prepending the vertex name with two underscores so MetaPost
can acces them:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,50) \fmfleft{i} \fmfright{o} \fmfdot{i,o} \fmflabel{i}{i} \fmflabel{o}{o} \fmf{phantom}{i,o} \fmfi{fermion,l=vpath between feynMP vertices,l.s=left}{vpath (__i,__o)} \end{fmfgraph*} \end{fmffile}
\fmfi{fermion}{vpath (__i,__o) shifted(10,-20)}
\fmfi{fermion}{vpath (__i,__o) rotatedaround(vloc(__i),45)}
Here is an example of curved paths with i{m-i} .. {right}v
drawing a path from i
to v
. The ..
operator ensures a smooth connection. i{m-i}
means that the line m-i
is the tangent of the path starting on i
's right side. {right}v
means the path's right end arrives in vertex v
's left side.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,60) \fmfipair{i,o,v,m} \fmfiequ{i}{(0,0)} \fmfiequ{o}{(w,0)} \fmfiequ{v}{(.5w,.5h)} \fmfiequ{m}{(.5w,h)} % grey tangent line (for illustration purposes) \fmfi{dashes,foreground=(0.7,,0.7,,0.7)}{m--i} \fmfi{dashes,foreground=(0.7,,0.7,,0.7)}{o--m} % curved paths \fmfi{fermion}{i{m-i} .. {right}v} \fmfi{fermion}{v{right} .. {o-m}o} % point labels \fmfiv{d.sh=circle,d.f=1,d.si=2pt,l=i}{i} \fmfiv{d.sh=circle,d.f=1,d.si=2pt,l=o}{o} \fmfiv{d.sh=circle,d.f=1,d.si=2pt,l=m}{m} \fmfiv{d.sh=circle,d.f=1,d.si=2pt,l=v,l.a=90}{v} \end{fmfgraph*} \end{fmffile}
You can control a path's curvature by adding tension
between two ..
operators (less tension is more curvature):
Here are some examples from the aforementioned webpage making one long path:
Some Feynman diagrams contributing to top quark pair production via gluon-gluon fusion:
Full code for a multipage PDF including all figures below can be found here.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i2,i1} \fmfright{o2,o1} % main \fmf{fermion}{i1,v1,i2} \fmf{fermion}{o2,v2,o1} \fmf{gluon,label=$g$,label.side=right,label.dist=10}{v2,v1} % labels \fmflabel{$q$}{i1} \fmflabel{$\overline{q}$}{i2} \fmflabel{$\overline{\text{t}}$}{o2} \fmflabel{t}{o1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i2,i1} \fmfright{o2,o1} \fmfshift{2 left}{i1} \fmf{fermion}{o2,v2,o1} \fmf{gluon}{v1,i1} \fmf{gluon}{v1,i2} \fmf{gluon,label=$g$}{v1,v2} % labels \fmfv{l.d=4,l=$g$}{i1} \fmfv{l.d=6,l=$g$}{i2} \fmflabel{$\overline{\text{t}}$}{o2} \fmflabel{t}{o1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i2,i1} \fmfright{o2,o1} % main \fmf{gluon}{v1,i1} \fmf{fermion}{v1,o1} \fmf{gluon}{i2,v2} \fmf{fermion}{o2,v2} \fmf{fermion,label=t}{v2,v1} % labels \fmflabel{$g$}{i2} \fmflabel{$g$}{i1} \fmfv{l.d=7,l.a=22,l=t}{o1} \fmfv{l.d=7,l.a=-20,l=$\overline{\text{t}}$}{o2} \end{fmfgraph*} \end{fmffile}
With radiated quarks or gluons that will form hard jets:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,70) \fmfleft{i2,i1} \fmfright{o2,o1} \fmftop{t} \fmfshift{5 up}{t} % skeleton \fmf{phantom}{i1,v1,i2} \fmf{phantom}{o1,v2,o2} \fmf{phantom}{v1,v2} \fmffreeze % main \fmf{fermion}{i1,g} \fmf{plain,tension=2.8}{g,v1} \fmf{fermion}{v1,i2} \fmf{gluon,tension=0}{t,g} \fmf{gluon}{v1,v2} \fmf{fermion}{o2,v2,o1} % labels \fmflabel{$q$}{i1} \fmflabel{$\overline{q}$}{i2} \fmfv{l.d=5,l.a=25,l=$g$}{t} \fmflabel{$\bar{\text{t}}$}{o2} \fmflabel{$\text{t}$}{o1} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,75) \fmfleft{i2,i1} \fmfright{o2,o1} \fmftop{t} \fmfshift{4 left}{i1} \fmfshift{2 left}{i2} \fmfshift{5 up}{t} % skeleton \fmf{phantom}{i1,v1,i2} \fmf{phantom}{o1,v2,o2} \fmf{phantom,tension=1.2}{v1,v2} \fmffreeze % main \fmf{gluon,tension=0.8}{g,i1} \fmf{fermion}{v1,g} \fmf{gluon}{v1,i2} \fmf{fermion,tension=0}{g,t} \fmf{gluon}{v1,v2} \fmf{fermion}{o2,v2,o1} % labels \fmfv{l.d=4,l=$g$}{i1} \fmfv{l.d=6,l=$g$}{i2} \fmfv{l.d=5,l.a=25,l=$q$}{t} \fmflabel{$\bar{\text{t}}$}{o2} \fmflabel{$\text{t}$}{o1} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,75) \fmfleft{i2,i1} \fmfright{o2,o1} \fmftop{t} \fmfshift{4 left}{i1} \fmfshift{2 left}{i2} \fmfshift{5 up}{t} % skeleton \fmf{phantom}{i1,v1,i2} \fmf{phantom}{o1,v2,o2} \fmf{phantom,tension=1.2}{v1,v2} \fmffreeze % main \fmf{gluon,tension=0.8}{g,i1} \fmf{fermion}{v1,g} \fmf{fermion}{i2,v1} \fmf{fermion,tension=0}{g,t} \fmf{gluon}{v1,v2} \fmf{fermion}{o2,v2,o1} % labels \fmfv{l.d=4,l=$g$}{i1} \fmfv{l.d=6,l=$q$}{i2} \fmfv{l.d=5,l.a=25,l=$q$}{t} \fmflabel{$\bar{\text{t}}$}{o2} \fmflabel{$\text{t}$}{o1} \end{fmfgraph*} \end{fmffile}
A simple one:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) %\fmfset{arrow_len}{10} \fmfleft{i2,i1} \fmfright{o2,o1} \fmf{fermion}{i1,v1,i2} \fmf{fermion}{o2,v2,o1} \fmf{boson,label=$\text{Z}/\gamma^*$,label.side=right}{v1,v2} \fmflabel{$q$}{i1} \fmflabel{$\overline{q}$}{i2} \fmflabel{$\ell^+$}{o2} \fmflabel{$\ell^-$}{o1} \end{fmfgraph*} \end{fmffile}
Some variants of Drell-Yan plus jets.
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(125,75) \fmfleft{i2,i1} \fmfright{o2,o1} \fmftop{t} \fmf{phantom}{i1,v1,i2} \fmf{phantom}{o1,v2,o2} \fmf{phantom}{v1,v2} \fmffreeze \fmfshift{5 left}{i1} \fmfshift{5 up}{i1,t} \fmf{gluon,tension=0.8}{g,i1} \fmf{fermion}{v1,g} \fmf{fermion}{i2,v1} \fmf{fermion,tension=0}{g,t} \fmf{boson,label=$\text{Z}/\gamma^*$,label.side=right}{v1,v2} \fmf{fermion}{o2,v2,o1} \fmflabel{$g$}{i1} \fmflabel{$q$}{i2} \fmfv{l.a=25,l=$q$}{t} \fmflabel{$\ell^+$}{o2} \fmflabel{$\ell^-$}{o1} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,70) \fmfleft{i2,i1} \fmfright{o2,o1} \fmftop{t} \fmf{phantom}{i1,v1,i2} \fmf{phantom}{o1,v2,o2} \fmf{phantom}{v1,v2} \fmffreeze \fmf{fermion}{i1,g} \fmf{plain,tension=2.8}{g,v1} \fmf{fermion}{v1,i2} \fmf{gluon,tension=0}{t,g} \fmf{boson,label=$\text{Z}/\gamma^*$,label.side=right}{v1,v2} \fmf{fermion}{o2,v2,o1} \fmflabel{$q$}{i1} \fmflabel{$q'$}{i2} \fmflabel{$\ell^+$}{o2} \fmflabel{$\ell^-$}{o1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i2,i1} \fmfright{o2,o1} \fmflabel{$q$}{i1} \fmflabel{$\bar{q}$}{i2} \fmf{fermion}{i1,v1,v2,i2} \fmflabel{$g$}{o2} \fmflabel{Z}{o1} \fmf{photon}{v1,o1} \fmf{gluon}{v2,o2} \end{fmfgraph*} \end{fmffile}
Z boson with two b jets.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,90) \fmfpen{thick} \fmfleftn{i}{2} \fmfrightn{o}{4} %particelle entranti \fmf{fermion}{i1,v1} \fmf{fermion}{v2,i2} \fmflabel{$\bar{q}$}{i2} \fmflabel{$q$}{i1} %mediatore \fmf{fermion}{v1,v2} %%% produzione Z \fmf{photon,label=Z}{v2,v4} % produzione l l \fmf{fermion}{v4,o4} \fmf{fermion}{o3,v4} \fmflabel{$\ell^+$}{o3} \fmflabel{$\ell^-$}{o4} %%% produzione glume \fmf{gluon,label=$g$}{v1,v3} %produzione b b \fmf{fermion}{v3,o2} \fmf{fermion}{o1,v3} \fmflabel{$\bar{\text{b}}$}{o2} \fmflabel{b}{o1} \end{fmfgraph*} \end{fmffile}
Two simple ones:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,70) \fmfleft{i2,i1} \fmfright{o2,o1} \fmftop{t} \fmf{phantom}{i1,v1,i2} \fmf{phantom}{o1,v2,o2} \fmf{phantom}{v1,v2} \fmffreeze \fmf{fermion}{i1,g} \fmf{plain,tension=2.8}{g,v1} \fmf{fermion}{v1,i2} \fmf{gluon,tension=0}{t,g} \fmf{boson,label=$\text{W}^\pm$,label.side=right}{v1,v2} \fmf{fermion}{o2,v2,o1} \fmflabel{$q$}{i1} \fmflabel{$\overline{q}$}{i2} \fmflabel{$\ell^\pm$}{o1} \fmflabel{$\overline{\nu}_\ell$}{o2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,90) \fmfstraight \fmfleft{i2,i1} \fmfright{o1,l2,l1} % skeleton \fmf{phantom,tension=1.8}{i1,v1} \fmf{phantom,tension=1.0}{v1,l1} \fmf{phantom,tension=1.8}{v1,v2} \fmf{phantom,tension=1.8}{i2,v2} \fmf{phantom,tension=1.0}{v2,o1} \fmffreeze % W + jets \fmfshift{5 right}{l1,l2} \fmfshift{20 left}{o1} % quarks \fmflabel{$q$}{i1} \fmflabel{$\overline{q}$}{i2} \fmf{fermion}{i1,v1,v2,i2} % W boson \fmf{boson,tension=1.2,label=$W^+$,label.side=left}{v1,z} \fmf{gluon}{v2,o1} % leptons \fmflabel{$\ell^+$}{l1} \fmflabel{$\overline{\nu}_\ell$}{l2} \fmf{fermion}{l1,z,l2} \end{fmfgraph*} \end{fmffile}
Here are some examples of Higgs production in proton-proton collisions. For more Higgs related diagrams and plots, check out this summary paper by ATLAS and CMS with a gallery of Feynman diagrams, or this LHC TWiki page with high resolution cross section and branching ratio plots.
Higgs boson production via gluon-gluon fusion with a fermion triangle loop:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,h,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.5}{t1,o1} \fmf{phantom,tension=0.5}{t2,o2} \fmffreeze % top loop \fmf{fermion,tension=1}{t1,t2,t3,t1} % Higgs boson \fmf{dashes,tension=2.0}{t3,h} % labels \fmflabel{$g$}{i1} \fmflabel{$g$}{i2} \fmflabel{H}{h} \end{fmfgraph*} \end{fmffile}
Including final-state gluon radiation:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,120) \fmfstraight \fmfleft{d,i1,d,i2,d} \fmfright{d,o1,h,o2,o3} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.5}{t1,o1} \fmf{phantom,tension=0.5}{t2,o2} \fmffreeze % top loop \fmf{phantom,tension=0.8}{t1,t2,t3,t1} \fmf{fermion,tension=0,label=t,label.side=left}{t3,t1,t2} %\fmf{fermion,tension=0.01,label=t,label.side=left}{t2,r1,t3} \fmf{fermion,tension=0.001,label=t,label.side=left}{t2,r1} \fmf{fermion,tension=0.001}{r1,t3} % Higgs boson \fmf{dashes,tension=2}{t3,h} \fmffreeze % radiated gluon pulled by phantoms \fmf{gluon,tension=1.4}{r2,r1} \fmf{phantom,tension=1.5}{r2,o3} % pull up \fmf{phantom,tension=1.0}{r2,o2} % pull down % labels \fmflabel{$g$}{i1} \fmflabel{$g$}{i2} \fmflabel{$g$}{r2} \fmflabel{H}{h} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,120) \fmfstraight \fmfleft{d,i1,d,i2,d} \fmfright{d,o1,h,o2,o3} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.5}{t1,o1} \fmf{phantom,tension=0.5}{t2,o2} \fmffreeze % Higgs boson \fmf{dashes,tension=2}{t3,h} % top loop \fmf{phantom,tension=0.8}{t1,t2,t3,t1} \fmffreeze \fmf{fermion,tension=1,label=t,label.side=left}{t3,t1,t2,tm} \fmf{plain,tension=5}{tm,t3} \fmffreeze % radiated gluon pulled by phantoms \fmf{phantom,tension=1}{t2,r1} % offset vertex \fmf{phantom,tension=2}{r1,t3} % offset vertex \fmffreeze \fmf{gluon,tension=1.4}{r2,r1} \fmf{phantom,tension=1.5}{r2,o3} % pull up \fmf{phantom,tension=1.0}{r2,o2} % pull down % labels \fmflabel{$g$}{i1} \fmflabel{$g$}{i2} \fmflabel{$g$}{r2} \fmflabel{H}{h} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(170,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.92}{t1,t4} \fmf{phantom,tension=0.92}{t2,t3} % Higgs boson and gluon radiation \fmf{dashes,tension=1}{t4,o1} \fmf{gluon,tension=1}{o2,t3} % top loop \fmf{fermion,tension=0}{t1,t2,t3,t4,t1} % labels \fmflabel{$g$}{i1} \fmflabel{$g$}{i2} \fmflabel{H}{o1} \fmflabel{$g$}{o2} \end{fmfgraph*} \end{fmffile}
Some variations of Higgs boson production in vector boson fusion, where V can be a Z or W boson:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,80) \fmfleft{i1,i3} \fmfright{o1,o2,o3} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{i3,v3,o3} \fmf{phantom,tension=0.3}{v1,v3} \fmffreeze \fmf{boson,label=$V$,label.side=left}{v3,v2,v1} \fmf{dashes}{v2,o2} \fmflabel{$q$}{i3} \fmflabel{$q'$}{i1} \fmflabel{H}{o2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,90) \fmfleft{d,i1,d,d,i3,d} \fmfright{o1,d,o2,d,o3} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{i3,v3,o3} \fmf{phantom,tension=0.3}{v1,v3} \fmffreeze \fmf{boson,label=$V^*$,label.side=left,tension=0.7}{v3,v2,v1} \fmf{dashes}{v2,o2} \fmflabel{$q$}{i3} \fmflabel{$q'$}{i1} \fmflabel{H}{o2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,60) %\fmfstraight \fmfleft{i1,i3} \fmfright{o1,o2,o3} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{i3,v3,o3} \fmffreeze \fmf{boson,label=$V$,label.side=left}{v3,v2,v1} \fmffreeze \fmf{dashes}{v2,o2} \fmflabel{$q$}{i3} \fmflabel{$q'$}{i1} \fmflabel{H}{o2} \end{fmfgraph*} \end{fmffile}
Some variation of Higgs boson production in Higgs Strahlung, including diagrams with gluon radiation and ZH production in gluon-gluon fusion:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,60) \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion}{i1,v1} \fmf{fermion}{i2,v1} \fmf{boson,label=$V^*$,label.side=left}{v1,v2} \fmf{boson,label.side=left}{v2,o2} \fmf{dashes}{v2,o1} \fmflabel{$q'$}{i1} \fmflabel{$q$}{i2} \fmflabel{$V$}{o2} \fmflabel{H}{o1} \end{fmfgraph*} \end{fmffile}
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(240,100) \fmfset{wiggly_len}{18} \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion}{i1,v1} \fmf{fermion}{i2,v1} \fmf{boson,label=$V^*$,label.side=left}{v1,v2} \fmf{boson,label.side=left}{v2,o2} \fmf{dashes}{v2,o1} \fmflabel{$q'$}{i1} \fmflabel{$q$}{i2} \fmflabel{$V$}{o2} \fmflabel{H}{o1} \end{fmfgraph*} \end{fmffile}
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(240,100) \fmfset{wiggly_len}{18} \fmfleft{i1,i2} \fmfright{o1,o2} \fmftop{t1} \fmf{fermion}{i1,v1} \fmf{fermion,tension=2}{i2,s2,v1} \fmf{boson,label=$V^*$,label.side=left}{v1,v2} \fmf{boson,label.side=left}{v2,o2} \fmf{dashes}{v2,o1} \fmffreeze \fmf{gluon}{t1,s2} \fmflabel{$q'$}{i1} \fmflabel{$q$}{i2} %\fmflabel{$g$}{t1} \fmflabel{$V$}{o2} \fmflabel{H}{o1} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(170,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,m,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.4}{t1,o1} \fmf{phantom,tension=0.4}{t2,o2} \fmffreeze % top loop \fmf{fermion,tension=1}{t1,t2,t3,t1} \fmf{phantom,tension=1.4}{t3,m} \fmffreeze % Higgs boson \fmf{boson,tension=1.4,label=Z$^*$}{t3,h} \fmf{dashes,tension=1}{h,o1} \fmf{boson,tension=1}{h,o2} % labels \fmflabel{$g$}{i1} \fmflabel{$g$}{i2} \fmflabel{H}{o1} \fmflabel{Z}{o2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(170,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.92}{t1,t4} \fmf{phantom,tension=0.92}{t2,t3} % Higgs boson \fmf{dashes,tension=1}{t4,o1} \fmf{boson,tension=1}{t3,o2} % top loop \fmf{fermion,tension=0}{t1,t2,t3,t4,t1} % labels \fmflabel{$g$}{i1} \fmflabel{$g$}{i2} \fmflabel{H}{o1} \fmflabel{Z}{o2} \end{fmfgraph*} \end{fmffile}
Associated production of Higgs boson production with a top quark pair:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,90) \fmfleft{d,i1,d,d,i3,d} \fmfright{o1,d,o2,d,o3} \fmf{gluon,tension=1.2}{i1,v1} \fmf{gluon,tension=1.2}{v3,i3} \fmf{fermion}{o1,v1} \fmf{fermion}{v3,o3} \fmf{phantom,tension=0.3}{v1,v3} \fmffreeze \fmf{fermion}{v1,v2,v3} \fmf{dashes,tension=1.3}{v2,o2} \fmflabel{$g$}{i3} \fmflabel{$g$}{i1} \fmflabel{$t$}{o3} \fmflabel{$\bar{t}$}{o1} \fmflabel{H}{o2} \end{fmfgraph*} \end{fmffile}
Triangle diagram of gluon-gluon fusion to produce a pair of Higgs bosons.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(170,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,m,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.4}{t1,o1} \fmf{phantom,tension=0.4}{t2,o2} \fmffreeze % top loop \fmf{fermion,tension=1}{t1,t2,t3,t1} \fmf{phantom,tension=1.4}{t3,m} \fmffreeze % Higgs boson \fmf{dashes,tension=1.4}{t3,h} \fmf{dashes,tension=1}{h,o1} \fmf{dashes,tension=1}{h,o2} \end{fmfgraph*} \end{fmffile}
A box diagram of gluon-gluon fusion producing a pair of Higgs bosons.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(170,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=1}{t1,t4} \fmf{phantom,tension=1}{t2,t3} % Higgs boson \fmf{dashes,tension=1}{t4,o1} \fmf{dashes,tension=1}{t3,o2} % top loop \fmf{fermion,tension=0}{t1,t2,t3,t4,t1} \end{fmfgraph*} \end{fmffile}
For effective field, unknown or generalized processes beyond the Standard Model (BSM), one can introduce blobs of some size at some vertex with \fmfblob
.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(80,80) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,o2} % gluons \fmf{gluon}{i1,v} \fmf{gluon}{v,i2} \fmfblob{20}{v} % Higgs boson \fmf{dashes,tension=1}{v,o1} \fmf{dashes,tension=1}{v,o2} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(130,80) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,o2} % gluons \fmf{gluon}{i1,v} \fmf{gluon}{v,i2} \fmfblob{20}{v} % Higgs boson \fmf{dashes,tension=1}{v,h} \fmf{dashes,tension=1}{h,o1} \fmf{dashes,tension=1}{h,o2} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,60) \fmfstraight \fmfleft{i1,i2} \fmfright{o1,o2} % gluons \fmf{gluon}{i1,t1} \fmf{gluon}{t2,i2} \fmf{phantom,tension=0.6}{t1,o1} \fmf{phantom,tension=0.6}{t2,o2} \fmffreeze % top loop \fmf{fermion,tension=0.70}{t1,t2,t3,t1} % Higgs boson \fmf{dashes,tension=1}{t3,o1} \fmf{dashes,tension=1}{t3,o2} \fmfblob{20}{t3} \end{fmfgraph*} \end{fmffile}
Here are some examples of processes with a pseudoscalar Higgs boson a from a two Higgs doublet model (2HDM).
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(130,130) \fmfleft{d,d,g2,d,g1,d,d} \fmfright{b2,d,t2,d,t1,d,b1} \fmf{gluon,tension=2}{v1,g1} \fmf{gluon,tension=2}{g2,v2} \fmf{phantom}{v1,t1} \fmf{phantom}{v2,t2} \fmffreeze \fmf{fermion}{b2,v2,v3,v1,b1} \fmf{dashes,tension=1.5,label=$a$,l.s=left}{v3,a} \fmf{fermion}{t2,a,t1} \fmflabel{$g$}{g1} \fmflabel{$g$}{g2} \fmflabel{$\tau^-$}{t1} \fmflabel{$\tau^+$}{t2} \fmflabel{b}{b1} \fmflabel{$\overline{\text{b}}$}{b2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(180,140) \fmfstraight \fmfleft{i2,g2,g1,i1} \fmfright{o4,o3,o2,o1} \fmftop{top} \fmfbottom{bot} % gluon \fmf{gluon,tension=2.6}{t1,g1} \fmf{gluon,tension=2.6}{g2,t2} \fmf{phantom,tension=0.4}{o1,t1,o3} \fmf{phantom,tension=0.4}{o2,t2,o4} \fmffreeze % top loop \fmf{fermion,tension=1.0}{t1,t3,t2,t1} \fmf{phantom,tension=0.4}{o3,t3,o2} \fmffreeze % Higgs bosons \fmf{dashes,tension=1.4,label=H,l.s=left}{t3,h} \fmf{dashes,tension=1.2,label=$a$,l.s=right}{v1,h,v2} % decay products \fmf{phantom,tension=0.8}{top,v1} \fmf{phantom,tension=0.8}{v2,bot} \fmfshift{16 down}{o1} \fmfshift{ 8 down}{o2} \fmfshift{ 8 up}{o3} \fmfshift{16 up}{o4} \fmf{fermion,tension=1.8}{o2,v1,o1} \fmf{fermion,tension=1.8}{o4,v2,o3} % labels \fmflabel{$g$}{g1} \fmflabel{$g$}{g2} \fmflabel{$\text{b}$}{o1} \fmflabel{$\overline{\text{b}}$}{o2} \fmflabel{$\tau^-$}{o3} \fmflabel{$\tau^+$}{o4} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(170,140) %\fmfstraight \fmfleft{d,i2,d,d,i1,d} \fmfright{q2,t2,t1,b2,b1,q1} \fmftop{top} \fmfbottom{bot} % quarks \fmf{fermion,tension=1.9}{i1,v1} \fmf{fermion,tension=1.9}{v2,i2} \fmf{fermion}{v1,q1} \fmf{fermion}{q2,v2} % vector bosons \fmf{boson,label=$V$,label.side=left}{v1,h,v2} % Higgs bosons \fmf{dashes,tension=1.1,label=H,label.side=left}{h,a} \fmf{dashes,label=$a$,label.side=right}{b,a,t} \fmf{fermion}{t2,t,t1} \fmf{fermion}{b2,b,b1} \fmf{phantom,tension=0.4}{top,b,t,bot} %\fmfshift{10 right}{b1,b2,t1,t2} % label \fmflabel{$\text{b}$}{b1} \fmflabel{$\overline{\text{b}}$}{b2} \fmflabel{$\tau^-$}{t1} \fmflabel{$\tau^+$}{t2} \fmflabel{$\text{q}$}{q1} \fmflabel{$\overline{\text{q}}'$}{q2} \end{fmfgraph*} \end{fmffile}
Here are some examples of processes with leptoquarks.
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(100,80) \fmfleft{LQ} \fmfright{q,l} \fmf{dashes,l.s=left,t=1.2}{LQ,v} \fmf{fermion}{v,q} \fmf{fermion}{v,l} \fmfv{l=LQ}{LQ} \fmfv{l.a=-28,l=$q$}{q} \fmfv{l.a=28,l=$\ell$}{l} \fmfdot{v} \fmfv{l.a=115,l=\large$\lambda_{\ell q}$}{v} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,120) \fmfstraight \fmfleft{i2,g2,d,g1,i1} \fmfright{o4,o3,o2,o1} \fmftop{top} \fmfbottom{bot} % gluonS \fmf{gluon,tension=1.4}{v,g1} \fmf{gluon,tension=1.4}{g2,v} \fmf{gluon,tension=1.6}{v,h} \fmf{dashes,tension=1.2,label=LQ,l.s=right}{v1,h} \fmf{dashes,tension=1.2,label=$\overline{\text{LQ}}$,l.s=right}{h,v2} % decay products \fmf{phantom,tension=0.8}{top,v1} \fmf{phantom,tension=0.8}{v2,bot} \fmfshift{16 down}{o1} \fmfshift{ 8 down}{o2} \fmfshift{ 8 up}{o3} \fmfshift{16 up}{o4} \fmf{fermion,tension=1.8}{o1,v1,o2} \fmf{fermion,tension=1.8}{o4,v2,o3} % labels \fmflabel{$g$}{g1} \fmflabel{$g$}{g2} \fmflabel{$\overline{\ell}$}{o1} \fmflabel{$q$}{o2} \fmflabel{$\ell$}{o3} \fmflabel{$\overline{q}$}{o4} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(100,120) \fmfstraight \fmfleft{i2,g,i1} \fmfright{o4,o3,o2,o1} \fmftop{top} \fmfbottom{bot} % gluonS \fmf{gluon,tension=1.6}{g,h} \fmf{dashes,tension=1.3,label=LQ,l.s=right}{v1,h} \fmf{dashes,tension=1.3,label=$\overline{\text{LQ}}$,l.s=right}{h,v2} % decay products \fmf{phantom,tension=1.0}{top,v1} \fmf{phantom,tension=1.0}{v2,bot} \fmfshift{16 down}{o1} \fmfshift{ 8 down}{o2} \fmfshift{ 8 up}{o3} \fmfshift{16 up}{o4} \fmf{fermion,tension=1.8}{o1,v1,o2} \fmf{fermion,tension=1.8}{o4,v2,o3} % labels \fmflabel{$g$}{g} \fmflabel{$\tau^+$}{o1} \fmflabel{b}{o2} \fmflabel{\vspace{8pt}$\tau^-$}{o3} \fmflabel{$\overline{\text{b}}$}{o4} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,100) \fmfleft{i2,i1} \fmfright{o2,l2,l1} % gluon + quarks \fmf{gluon}{i1,v1} \fmf{fermion}{i2,v1} \fmf{fermion,label=$q$,label.side=left}{v1,v2} \fmf{fermion}{v2,o2} \fmflabel{$g$}{i1} \fmflabel{$q$}{i2} \fmflabel{$\ell$}{o2} % LQ \fmf{dashes,label=LQ,label.side=left}{v2,LQ} % LQ -> lepton + quark \fmf{fermion}{l2,LQ,l1} \fmfshift{20 right}{l1,l2} \fmflabel{$q$}{l1} \fmflabel{$\overline{\ell}$}{l2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfstraight \fmfleft{i2,m,i1} \fmfright{o2,l2,l1} % skeleton \fmf{phantom,tension=1.0}{i1,v1} \fmf{phantom,tension=1.0}{v2,l1} \fmf{phantom,tension=1.5}{v1,v2} \fmf{phantom,tension=1.0}{i2,v1} \fmf{phantom,tension=1.0}{v2,o2} \fmf{phantom,tension=0.6}{i1,t1,m} \fmf{phantom,tension=0.6}{t1,LQ} \fmf{phantom,tension=2.0}{l1,LQ,l2} \fmffreeze % gluon + quarks \fmf{phantom,tension=5.0}{i1,g} % shorten leg \fmf{phantom,tension=5.0}{i2,q} % shorten leg \fmf{phantom,tension=5.0}{o2,l} % shorten leg \fmf{gluon}{g,v1} \fmf{fermion}{q,v1} \fmf{fermion,label=$q$,label.side=right}{v1,v2} \fmf{fermion}{v2,l} \fmflabel{$g$}{g} \fmflabel{$q$}{q} \fmflabel{$\ell$}{l} % LQ \fmf{dashes,tension=1.2,label=LQ,label.side=left}{v2,LQ} % LQ -> lepton + quark \fmf{fermion}{l2,LQ,l1} \fmfshift{20 right}{l1,l2} \fmflabel{$q$}{l1} \fmflabel{$\overline{\ell}$}{l2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,100) \fmfleft{i2,i1} \fmfright{o2,l2,l1} % gluon + quarks \fmf{gluon}{i1,v1} \fmf{fermion}{i2,v2,o2} \fmflabel{$g$}{i1} \fmflabel{$q$}{i2} \fmflabel{$\ell$}{o2} % LQs \fmf{dashes,label=LQ,label.side=left}{v2,v1,LQ} % LQ -> lepton + quark \fmf{fermion}{l2,LQ,l1} \fmflabel{$q$}{l1} \fmflabel{$\overline{\ell}$}{l2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfstraight \fmfleft{i2,i1} \fmfright{o2,l2,l1} % skeleton \fmf{phantom,tension=1.8}{i1,v1} \fmf{phantom,tension=1.0}{v1,l1} \fmf{phantom,tension=1.4}{v1,v2} \fmf{phantom,tension=1.8}{i2,v2} \fmf{phantom,tension=1.0}{v2,o2} \fmffreeze % gluon + quarks \fmf{gluon}{i1,v1} \fmf{fermion}{i2,v2,o2} \fmflabel{$g$}{i1} \fmflabel{$q$}{i2} \fmflabel{$\ell$}{o2} % LQs \fmf{dashes,tension=1.2,label=LQ,label.side=left}{v1,LQ} \fmf{dashes,label=LQ,label.side=left}{v2,v1} % LQ -> lepton + quark \fmf{fermion}{l2,LQ,l1} \fmfshift{5 right}{l1,l2} \fmfshift{20 left}{o2} \fmflabel{$q$}{l1} \fmflabel{$\overline{\ell}$}{l2} \end{fmfgraph*} \end{fmffile}
% preamble \usepackage{xcolor} \definecolor{myblue}{rgb}{.0,.13,.98} % 0,32,250 % body \large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,180) \fmfleft{i1,iq,i2,ip,i3} \fmfright{y1,y2,y3,d,o1,o2,f1,o3,f2,d,x3,x2,x1} \fmfset{arrow_len}{10} % skeleton \fmf{phantom,t=0.48}{vq,vp} \fmf{phantom}{ip,vp,x1} \fmf{phantom}{iq,vq,y1} \fmffreeze \fmf{phantom,t=1.8}{vq,v1,vp} \fmf{phantom,t=1.8}{v1,v2} \fmf{phantom,t=1}{o3,v2,o2} \fmffreeze % partons \fmf{fermion,lab=$q$,l.s=right}{vp,v1} \fmf{gluon,lab=$g$,l.s=left}{vq,v1} % hard process \fmf{fermion,lab=$q$,l.s=right}{v1,v2} \fmf{fermion}{v2,o1} \fmfshift{10 right}{f1,f2} \fmf{dashes,t=2,lab=LQ,l.s=left}{v2,vf} \fmf{phantom,t=0.4}{x1,vf} % pull vf \fmf{fermion,t=1.4}{f1,vf,f2} % proton 1 \fmf{phantom}{ip,vp} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % proton 2 \fmf{phantom}{iq,vq} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4,-6)} % X \fmfshift{25 left}{x1} \fmfshift{20 left}{x2,x3} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.0 shifted (0.0, 2.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.0 shifted (0.0, 0.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.0 shifted (0.0,-2.0)} \fmfblob{25}{vp} % outgoing proton \fmfshift{25 left}{y1} \fmfshift{20 left}{y2,y3} \fmf{phantom}{vq,y1} % to help \fmfi \fmf{phantom}{vq,y2} % to help \fmfi \fmf{phantom}{vq,y3} % to help \fmfi \fmfi{fermion}{vpath (__vq,__y1) scaled 1.0 shifted (0.0,-2.0)} \fmfi{fermion}{vpath (__vq,__y2) scaled 1.0 shifted (0.0, 0.0)} \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted (0.0, 2.0)} \fmfblob{25}{vq} % labels \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{ip} \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{iq} \fmfv{l=$\overline{\ell}$}{f1} \fmfv{l=$q$}{f2} \fmfv{l=$\ell$,l.a=-20}{o1} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4,f=(.0,,.13,,.98), l=$\color{myblue}\lambda$,l.d=7,l.a=-10}{v2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,90) \fmfstraight \fmfleft{i2,i1} \fmfright{o2,l2,l1} % skeleton \fmf{phantom,tension=1.8}{i1,v1} \fmf{phantom,tension=1.1}{v1,l1} \fmf{phantom,tension=1.6}{v1,v2} \fmf{phantom,tension=1.8}{i2,v2} \fmf{phantom,tension=1.1}{v2,o2} \fmffreeze % gluon + quarks \fmf{fermion}{i1,v1} \fmf{photon}{i2,v2} \fmf{fermion}{v2,o2} % LQs \fmf{dashes,tension=1.2,label=LQ,label.side=left}{v1,LQ} \fmf{fermion}{v1,v2} % LQ -> lepton + quark \fmf{fermion}{l2,LQ,l1} \fmfshift{5 right}{l1,l2} \fmfshift{2 down}{l2} \fmfshift{20 left}{o2} \fmfv{l.a=160,l=$q$}{i1} \fmfv{l.a=-165,l=$\gamma$}{i2} \fmfv{l.a=-20,l=$\ell$}{o2} \fmfv{l.a=20,l=$\overline{q}$}{l1} \fmfv{l.a=-10,l=$\overline{\ell}$}{l2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4,f=(.0,,.13,,.98), l=$\color{myblue}\lambda$,l.d=6,l.a=-45}{v1} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,190) \fmfleft{i1,iq,i2,ip,i3} \fmfright{y1,y2,y3,d,o1,o2,f1,o3,f2,d,x3,x2,x1} \fmfset{arrow_len}{10} % skeleton \fmf{phantom,t=0.48}{vq,vp} \fmf{phantom,t=1.3}{ip,vp} \fmf{phantom,t=1.3}{iq,vq} \fmf{phantom}{vp,x1} \fmf{phantom}{vq,y1} \fmffreeze \fmf{phantom,t=1.6}{vq,v2,v1,vp} \fmf{phantom,t=0.7}{v1,o3} \fmf{phantom,t=0.7}{v2,o2} \fmffreeze % parton \fmf{fermion,t=1.6,lab=$q$}{vp,v1} \fmf{photon,t=1.6,lab=$\gamma$,l.d=3,l.s=left}{vq,v2} \fmf{fermion,t=1,lab=$\ell$,l.s=right}{v1,v2} \fmf{fermion,t=1}{v2,o1} % hard process \fmfshift{5 right}{f1,f2} \fmf{dashes,t=2,lab=LQ,l.d=3,l.s=left}{v1,vf} \fmf{fermion,t=1.4}{f1,vf,f2} %\fmf{fermion,t=1}{v2,o1} % proton 1 \fmf{phantom}{ip,vp} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % proton 2 \fmf{phantom}{iq,vq} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4,-6)} % X \fmfshift{25 left}{x1} \fmfshift{20 left}{x2,x3} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.0 shifted ( 0.0, 2.5)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.0 shifted ( 0.0,-3.0)} \fmfblob{22}{vp} % outgoing proton \fmfshift{25 left}{y1} \fmfshift{20 left}{y2,y3} \fmf{phantom}{vq,y1} % to help \fmfi \fmf{phantom}{vq,y2} % to help \fmfi \fmf{phantom}{vq,y3} % to help \fmfi \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted (-1.5,-6.0)} \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted ( 1.5, 6.0)} \fmfblob{22}{vq} % labels \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{ip} \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{iq} \fmfv{l=$\text{p}^+$,l.a=-20,l.d=8}{y3} \fmfv{l=$\overline{\ell}$}{f1} \fmfv{l=$q$}{f2} \fmfv{l=$\ell$,l.a=-20}{o1} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4,f=(.0,,.13,,.98), l=$\color{myblue}\lambda$,l.d=6,l.a=-45}{v1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,60) \fmfleft{i2,i1} \fmfright{o2,o1} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{o2,v2,i2} \fmf{dashes,label=LQ,l.s=right,t=0.8}{v1,v2} \fmfv{l.a=150,l=$q$}{i1} \fmfv{l.a=30,l=$\ell$}{o1} \fmfv{l.a=-150,l=$\overline{q}$}{i2} \fmfv{l.a=-30,l=$\overline{\ell}$}{o2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,120) \fmfleft{d,d,g2,d,d,g1,d,d} \fmfright{b2,d,t2,d,d,t1,d,b1} % gluons \fmf{gluon,tension=1.8}{v1,g1} \fmf{gluon,tension=1.8}{g2,v2} \fmf{phantom}{v1,t1} \fmf{phantom}{v2,t2} \fmffreeze % b quarks \fmf{fermion}{b2,v2,vl2} \fmf{fermion}{vl1,v1,b1} % LQ (t-channel) \fmf{dashes,tension=1,label=LQ,l.s=left}{vl1,vl2} % tau leptons \fmf{fermion}{t1,vl1} \fmf{fermion}{vl2,t2} % labels \fmfv{l=$g$,l.a=160,l.d=6}{g1} \fmfv{l=$g$,l.a=-160,l.d=6}{g2} \fmfv{l=b,l.a=20,l.d=5}{b1} \fmfv{l=$\overline{\text{b}}$,l.a=-20,l.d=5}{b2} \fmfv{l=$\tau^+$,l.a=20,l.d=5}{t1} \fmfv{l=$\tau^-$,l.a=-5,l.d=5}{t2} \end{fmfgraph*} \end{fmffile}
Here are some examples of processes with Z' and W'.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,60) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmf{fermion}{i1,v1,o1} \fmffreeze \fmf{fermion,tension=1.5}{o3,v3,o2} \fmf{phantom,tension=1.8}{i3,v3} \fmflabel{b}{i1} \fmflabel{c}{o1} \fmflabel{$\tau$}{o2} \fmflabel{$\nu_\tau$}{o3} % boson \fmf{boson,label=W$'$,label.side=left}{v3,v1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,60) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmf{fermion}{i1,v1,o1} \fmffreeze \fmf{fermion,tension=1.5}{o3,v3,o2} \fmf{phantom,tension=1.8}{i3,v3} \fmflabel{b}{i1} \fmflabel{s}{o1} \fmflabel{$\mu$}{o2} \fmflabel{$\mu$}{o3} % boson \fmf{boson,label=Z$'$,label.side=left}{v3,v1} \fmfblob{16}{v1} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(110,100) \fmfleft{i2,i1} \fmfright{o2,m2,m1,o1} \fmfshift{30 right}{m1,m2} \fmf{fermion}{i1,v1,i2} \fmf{phantom}{o2,v2,o1} \fmf{boson,label=$\text{Z}/\gamma^*$,label.side=right}{v1,v2} \fmffreeze \fmf{fermion}{o2,v2,z,o1} \fmffreeze \fmf{boson,label=$\text{Z}'$,label.side=left}{z,m} \fmf{fermion,tension=1.4}{m2,m,m1} \fmf{phantom,tension=0.6}{i2,m} \fmflabel{$\mu^-$}{m1} \fmflabel{$\mu^+$}{m2} \fmflabel{$\mu^-$}{o1} \fmflabel{$\mu^+$}{o2} \fmflabel{$q$}{i1} \fmflabel{$\overline{q}'$}{i2} \end{fmfgraph*} \end{fmffile}
More SUSY diagram are available here (images and here (GitHub).
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(80,120) %\fmfstraight \fmfleft{i2,b,i1} \fmfright{o4,o3,o2,o1} \fmftop{top} \fmfbottom{bot} % blob \fmfblob{16}{b} \fmf{dashes,tension=1.3,label=$\tilde{\text{t}}$,l.s=right}{v1,b} \fmf{dashes,tension=1.3,label=$\overline{\tilde{\text{t}}}$,l.s=right}{b,v2} % decay products %\fmf{phantom,tension=1.0}{top,v1} %\fmf{phantom,tension=1.0}{v2,bot} \fmfshift{16 down}{o1} \fmfshift{ 8 down}{o2} \fmfshift{ 8 up}{o3} \fmfshift{16 up}{o4} \fmf{dots,tension=1.8}{v1,o1} \fmf{fermion,tension=1.8}{o2,v1} \fmf{fermion,tension=1.8}{v2,o4} \fmf{dots,tension=1.8}{o3,v2} % labels \fmflabel{$\tilde{\chi}_1^0$}{o1} \fmflabel{$\overline{\text{t}}$}{o2} \fmflabel{$\tilde{\chi}_1^0$}{o3} \fmflabel{t}{o4} \end{fmfgraph*} \end{fmffile}
A top quark pair decaying in to bbWW with the W boson pair in the semi-leptonic final state.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(180,150) \fmfset{arrow_len}{3.5mm} \fmfstraight \fmfleft{i1,i2,i3,i4,i5} \fmfright{o1,o2,o3,o4,o5,o6} % bW -> bqq \fmf{boson,tension=1.5,label={$\text{W}^+$},label.side=right}{v2,v21} % W boson \fmf{fermion}{v2,o6} % b quark \fmf{fermion}{o5,v21,o4} % bW -> blnu \fmf{boson,tension=1.5,label={$\text{W}^-$},label.side=right}{v1,v11} % W boson \fmf{fermion}{v1,o3} % b quark \fmf{fermion}{o1,v11,o2} \fmf{fermion,tension=1.5}{v1,i3,v2} % top quark pair \fmf{phantom,label={$\bar{\text{t}}$},tension=1}{i3,v1} \fmf{phantom,label={$\text{t}$},tension=1}{i3,v2} \fmflabel{\makebox[3.2mm][l]{$\bar{\nu}_\ell$} /\, q}{o1} \fmflabel{\makebox[3.2mm][l]{$\ell^-$} /\, $\bar{\text{q}}'$}{o2} \fmflabel{$\bar{\text{b}}$}{o3} \fmflabel{\makebox[3.2mm][l]{$\bar{\text{q}}'$} /\, $\nu_\text{l}$}{o4} \fmflabel{\makebox[3.2mm][l]{q} /\, $\ell^+$}{o5} \fmflabel{$\text{b}$}{o6} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(180,150) \fmfset{arrow_len}{3.5mm} \fmfstraight \fmfleft{i1,i2,i3,i4,i5} \fmfright{o1,o2,o3,o4,o5,o6} % qq -> g \fmf{fermion,tension=1.5}{i4,vg,i2} \fmf{gluon,tension=1.5}{vtt,vg} \fmf{phantom,tension=0.5}{o3,vtt,o4} % balance \fmflabel{$\bar{q}$}{i2} \fmflabel{$q$}{i4} \fmffreeze % tt \fmf{fermion,tension=1.2}{v1,vtt,v2} % top quark pair \fmf{phantom,label={$\bar{\text{t}}$},tension=0,label.side=right}{vtt,v1} % top label \fmf{phantom,label={$\text{t}$},tension=0,label.side=left}{vtt,v2} % top label \fmf{phantom,tension=1}{o1,v1,o2} % balance \fmf{phantom,tension=1}{o5,v2,o6} % balance \fmf{phantom,tension=0.5}{i1,v1,v2,i5} % balance \fmffreeze % bW -> bqq \fmf{boson,tension=0.8,label={$\text{W}^+$},label.side=right}{v2,v21} % W boson \fmf{fermion,tension=1.2}{v2,o6} % b quark \fmf{fermion}{o5,v21,o4} % bW -> blnu \fmf{boson,tension=1.4,label={$\text{W}^-$},label.side=right}{v1,v11} % W boson \fmf{fermion,tension=0.5}{v1,o3} % b quark \fmf{fermion}{o1,v11,o2} \fmflabel{\makebox[3.2mm][l]{$\bar{\nu}_\ell$} /\, q}{o1} \fmflabel{\makebox[3.2mm][l]{$\ell^-$} /\, $\bar{\text{q}}'$}{o2} \fmflabel{$\bar{\text{b}}$}{o3} \fmflabel{\makebox[3.2mm][l]{$\bar{\text{q}}'$} /\, $\nu_\ell$}{o4} \fmflabel{\makebox[3.2mm][l]{q} /\, $\ell^+$}{o5} \fmflabel{$\text{b}$}{o6} \end{fmfgraph*} \end{fmffile}
A Higgs pair decaying into bbWW with the W boson pair in the semi-leptonic final state.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(180,150) \fmfset{arrow_len}{3.5mm} \fmfstraight \fmfleft{i1,i2,i3,i4} \fmfright{o1,o2,o3,o4,o5,o6} % WW -> qqlnu \fmf{fermion}{o1,v11,o2} % lepton, neutrino \fmf{fermion}{o3,v12,o4} % quarks \fmf{phantom}{i1,v11} \fmf{phantom}{i3,v12} \fmf{phantom,tension=0.5}{v11,v12} \fmffreeze % H -> bb \fmf{fermion}{o5,v2,o6} % b quark \fmf{phantom,tension=1.4}{i2,v1} \fmf{phantom,tension=3}{i4,v2} \fmf{phantom,tension=0.4}{v1,v2} % H -> WW \fmf{boson,label={$\text{W}^+$},label.side=left}{v1,v12} % W boson \fmf{boson,label={$\text{W}^-$},label.side=right}{v1,v11} % W boson \fmffreeze % Higgs bosons \fmf{dashes,label=H,label.side=left,tension=1.5}{i3,v0} % H boson \fmf{dashes,label=H,label.side=right,tension=1}{v0,v1} % H boson \fmf{dashes,label=H,label.side=left,tension=1}{v0,v2} % H boson \fmf{phantom,tension=0.1}{i4,v0} \fmflabel{\makebox[3.2mm][l]{$\bar{\nu}_\text{l}$} /\, q}{o1} \fmflabel{\makebox[3.2mm][l]{$\text{l}^-$} /\, $\bar{\text{q}}'$}{o2} \fmflabel{\makebox[3.2mm][l]{$\bar{\text{q}}'$} /\, $\nu_\text{l}$}{o3} \fmflabel{\makebox[3.2mm][l]{q} /\, $\text{l}^+$}{o4} \fmflabel{$\bar{\text{b}}$}{o5} \fmflabel{$\text{b}$}{o6} \end{fmfgraph*} \end{fmffile}
Note that \makebox
is used to create boxes of the same width, such that the slashes are horizontally aligned.
Naive sketch of the topology of Higgs pair production, where the Higgs bosons are boosted back to back:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(400,150) \fmfset{wiggly_len}{10} \fmfset{arrow_len}{12} \fmfleft{i1,i2,i3,i4} \fmfright{o0,o1,o2,o3} \fmf{fermion}{i1,v1,i2} \fmf{fermion}{i3,v2,i4} \fmf{fermion,tension=1.2}{o1,z,o2} \fmf{boson,tension=4}{v1,w} \fmf{boson,tension=4}{v2,w} \fmfdot{p} \marrow{a}{down}{}{}{p,z} \marrow{b}{down}{}{}{p,w} \fmf{dashes,label={H},tension=7}{p,w} \fmf{dashes,label={H},label.side=left,tension=7}{p,z} \fmflabel{$\ell$}{i1} \fmflabel{$\nu$}{i2} \fmflabel{$q$}{i3} \fmflabel{$\bar{q}$}{i4} \fmflabel{b}{o1} \fmflabel{$\bar{\text{b}}$}{o2} \end{fmfgraph*} \end{fmffile}
where \marrow
is predefined in the preamble as few sections above.
Tau pair resonance in association with two quarks, one of which is a b quark, in the t-channel, like single top production:
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(300,200) \fmfset{wiggly_len}{8mm} \fmfleft{i1,i2} \fmfright{o1,t1,t2,o2} \fmf{phantom,tension=1.2,label=b}{i1,v11} \fmf{phantom,tension=1.2}{i2,v12} \fmf{phantom,tension=1}{i1,v11,o1} \fmf{phantom,tension=1}{i2,v12,o2} \fmf{boson,tension=1,label=X}{v11,v12} \fmffreeze \fmf{fermion}{i1,v11,v21} \fmf{fermion,width=2,foreground=(0.070,,0.349,,0.156)}{v21,o1} \fmf{fermion,label=$q$}{i2,v12} \fmf{fermion,label=$\overline{q}'$,label.side=left,width=2,foreground=(0.035,,0.168,,0.623)}{v12,o2} \fmf{phantom,tension=2,label=B'}{v11,v21} \fmf{phantom,tension=1.8,label=b}{v21,o1} \fmf{boson,label=X(28)}{v21,t} \fmf{fermion,width=2,foreground=(0.349,,0.070,,0.125)}{t1,t,t2} \fmf{phantom,tension=1}{v12,t} \fmf{phantom,tension=0.4}{v12,v21} \fmflabel{$\tau^+$}{t1} \fmflabel{$\tau^-$}{t2} \end{fmfgraph*} \end{fmffile}
With \parbox{<width>pt}
(with unit point pt
) each Feynman diagram in a fmfgraph
environment with also with width
can be put in a box which centers vertically with the text line, so you can use diagrams in equations. Here is an example of diagrams in equation between text in a LaTeX file.
Here are some examples of the hierarchy problem in terms of Higgs mass squared corrections using BSM contributions like those from SUSY and vector-like quarks (VLQs). \quad
is used to achieve equal spacing.
\begin{fmffile}{feyngraph} \Delta m_H^2 = \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmf{dashes,tension=1}{i,v1} % ,label=H,label.side=left \fmf{dashes,tension=1}{v2,o} \fmf{fermion,left,tension=0.4,label=$\text{t}$}{v1,v2,v1} \end{fmfgraph*}} \quad + \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmftop{m} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmflabel{$\widetilde{\text{t}}$}{m} \fmf{dashes,tension=1}{i,v1} \fmf{dashes,tension=1}{v1,o} \fmf{dashes,right,tension=0}{v1,m,v1} \end{fmfgraph*}} \quad + \quad\ldots \end{fmffile}
\begin{fmffile}{feyngraph} \Delta m_H^2 = \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmf{dashes,tension=1}{i,v1} % ,label=H,label.side=left \fmf{dashes,tension=1}{v2,o} \fmf{fermion,left,tension=0.4,label=$\text{t}$}{v1,v2,v1} \end{fmfgraph*}} \quad + \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmf{dashes,tension=1}{i,v1} % ,label=H,label.side=left \fmf{dashes,tension=1}{v2,o} \fmf{fermion,left,tension=0.4,label=$\text{t}$}{v2,v1} \fmf{fermion,left,tension=0.4,label=$\text{T}$}{v1,v2} \end{fmfgraph*}} \quad + \quad\ldots \end{fmffile}
\begin{fmffile}{feyngraph} \Delta m_H^2 = \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmf{dashes,tension=1}{i,v1} % ,label=H,label.side=left \fmf{dashes,tension=1}{v2,o} \fmf{fermion,left,tension=0.4,label=$\text{t}$}{v1,v2,v1} \end{fmfgraph*}} \quad + \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmf{dashes,tension=1}{i,v1} % ,label=H,label.side=left \fmf{dashes,tension=1}{v2,o} \fmf{fermion,left,tension=0.4,label=$\text{t}$}{v2,v1} \fmf{fermion,left,tension=0.4,label=$\text{T}$}{v1,v2} \end{fmfgraph*}} \quad + \quad\parbox{100pt}{ \begin{fmfgraph*}(100,80) \fmfleft{i} \fmfright{o} \fmftop{m} \fmfv{label=H,l.a=60}{i} \fmfv{label=H,l.a=120}{o} \fmflabel{$\text{T}$}{m} \fmf{dashes,tension=1}{i,v1} \fmf{dashes,tension=1}{v1,o} \fmf{fermion,right,tension=0}{v1,m,v1} \end{fmfgraph*}} \quad + \quad\ldots \end{fmffile}
With a user-defined command and the scalerel
package, we can make curly braces of custom size (inspiration):
\usepackage{scalerel} \newcommand{\mylbrace}[2]{\vspace{#2pt}\hspace{6pt}\scaleleftright[\dimexpr5pt+#1\dimexpr0.06pt]{\lbrace}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{.}} \newcommand{\myrbrace}[2]{\vspace{#2pt}\scaleleftright[\dimexpr5pt+#1\dimexpr0.06pt]{.}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{\rbrace}\hspace{6pt}}
with two arguments: the vertical size and the vertical shift (with \vspace
). Position can be further finetuned by using \fmfv
's label distance (l.d
) and angle (l.a
) options
With above three lines added in the preamble, one can make for example neutral kaon decay (described by the GIM mechanism). Notice that a middle point K
on the right was defined to serve as an anchor for \fmfv
which contains the brace:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(175,60) \fmfstraight \fmfleft{i2,K,i1} \fmfright{o2,o1} % quarks \fmf{fermion}{i1,t1} \fmf{fermion}{t4,i2} \fmflabel{d}{i1} \fmflabel{$\overline{\text{s}}$}{i2} \fmfv{l.d=20,l.a=180,l={$\text{K}^0$\mylbrace{86}{0}}}{K} % placeholders quarks-muons \fmf{phantom,tension=1}{t1,t2} \fmf{phantom,tension=1}{t4,t3} % muons \fmf{fermion,tension=1}{t2,o1} \fmf{fermion,tension=1}{o2,t3} \fmflabel{$\mu^-$}{o1} \fmflabel{$\mu^+$}{o2} % box loop \fmf{boson,tension=0,label=$\text{W}^-$,label.side=left}{t1,t2} \fmf{boson,tension=0,label=$\text{W}^+$,label.side=left}{t3,t4} \fmf{fermion,tension=0,label=u}{t1,t4} \fmf{fermion,tension=0,label=$\nu_\mu$}{t3,t2} \fmfv{d.shape=circle,d.size=4,l=$\sin\theta_\text{C}\quad$,l.a=110}{t1} \fmfv{d.shape=circle,d.size=4,l=$\cos\theta_\text{C}\quad$,l.a=-110}{t4} \end{fmfgraph*} \end{fmffile}
Or with neutral kaon mixing:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(180,60) \fmfstraight \fmfleft{i2,K,i1} \fmfright{o2,Kbar,o1} % quarks left \fmf{fermion}{i1,t1} \fmf{fermion}{t4,i2} \fmflabel{d}{i1} \fmflabel{$\overline{\text{s}}$}{i2} \fmfv{l.d=22,l.a=180,l={$\text{K}^0$\mylbrace{86}{0}}}{K} % placeholders between quarks \fmf{phantom,tension=1}{t1,t2} \fmf{phantom,tension=1}{t4,t3} % quarks \fmf{fermion,tension=1}{t2,o1} \fmf{fermion,tension=1}{o2,t3} \fmflabel{$\overline{\text{d}}$}{o1} \fmflabel{s}{o2} \fmfv{l.d=25,l.a=0,l={\myrbrace{86}{0}$\overline{\text{K}}^0$}}{Kbar} % box loop \fmf{boson,tension=0,label=$\text{W}^-$,label.side=left}{t1,t2} \fmf{boson,tension=0,label=$\text{W}^+$,label.side=left}{t3,t4} \fmf{fermion,tension=0,label=u,, c,, t}{t1,t4} \fmf{fermion,tension=0,label=u,, c,, t}{t3,t2} \end{fmfgraph*} \end{fmffile}
Notice that the use of double comma's is needed inside \fmf
, to make clear that the string are not separate arguments.
Instead of a brace, one can also make a oval blob with the following lines in the preamble (source):
\begin{filecontents*}{vovalblob.mp} vardef vovalblob (expr bd, a) (text vl)= forsuffixes $=vl: if not vexists $: venter $; fi vlist[vlookup $]decor.shape := fullcircle xscaled a; vlist[vlookup $]decor.size := bd; vlist[vlookup $]decor.sty := "shaded"; endfor enddef; \end{filecontents*} \def\fmfovalblob#1#2#3{\fmfcmd{input vovalblob; vovalblob ((#1), (#2), \fmfpfx{#3});}}
Here one defines the command \fmfovalblob
with two arguments: one for the size and one for the eccentricity. Use it as:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(175,60) \fmfstraight \fmfleft{i2,K,i1} \fmfright{o2,o1} % quarks \fmf{fermion,label.side=left,label=d\;}{i1,t1} \fmf{fermion,label.side=left,label=$\overline{\text{s}}$}{t4,i2} \fmfshift{10 left}{K} \fmfovalblob{.5w}{.4}{K} \fmfv{l.d=25,l.a=180,l=$\text{K}^0$}{K} % placeholders quarks-muons \fmf{phantom,tension=1}{t1,t2} \fmf{phantom,tension=1}{t4,t3} % muons \fmf{fermion,tension=1}{t2,o1} \fmf{fermion,tension=1}{o2,t3} \fmflabel{$\mu^-$}{o1} \fmflabel{$\mu^+$}{o2} % box loop \fmf{boson,tension=0,label=$\text{W}^-$,label.side=left}{t1,t2} \fmf{boson,tension=0,label=$\text{W}^+$,label.side=left}{t3,t4} \fmf{fermion,tension=0,label=u}{t1,t4} \fmf{fermion,tension=0,label=$\nu_\mu$}{t3,t2} \fmfv{d.shape=circle,d.size=4,l={\small$\sin\theta_\text{C}$\;},l.a=110}{t1} \fmfv{d.shape=circle,d.size=4,l={\small$\cos\theta_\text{C}$\;},l.a=-110}{t4} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(180,60) \fmfstraight \fmfleft{i2,K,i1} \fmfright{o2,Kbar,o1} % quarks left \fmf{fermion,label.side=left,label=d}{i1,t1} \fmf{fermion,label.side=left,label=$\overline{\text{s}}$}{t4,i2} \fmfshift{10 left}{K} \fmfovalblob{.5w}{.4}{K} \fmfv{l.d=25,l.a=180,l=$\text{K}^0$}{K} % placeholders between quarks \fmf{phantom,tension=1}{t1,t2} \fmf{phantom,tension=1}{t4,t3} % quarks right \fmf{fermion,tension=1,label.side=left,label=$\overline{\text{d}}$}{t2,o1} \fmf{fermion,tension=1,label.side=left,label=s}{o2,t3} \fmfshift{10 right}{Kbar} \fmfovalblob{.5w}{.4}{Kbar} \fmfv{l.d=25,l.a=3,l=$\overline{\text{K}}^0$}{Kbar} % box loop \fmf{boson,tension=0,label=$\text{W}^-$,label.side=left}{t1,t2} \fmf{boson,tension=0,label=$\text{W}^+$,label.side=left}{t3,t4} \fmf{fermion,tension=0,label=u,, c,, t}{t1,t4} \fmf{fermion,tension=0,label=u,, c,, t}{t3,t2} \end{fmfgraph*} \end{fmffile}
The \fmfi
command is the “immediate mode” verion of \fmf
. It allows to make lines that can be shifted and scaled with MetaPost
syntax, so you can make multiple line representing a proton, for example elastic electron-proton scattering or neutron decay:
\begin{fmffile}{feyngraph} \begin{fmfgraph}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson}{v1,v3} % neutron \fmf{phantom}{i3,v3,o3} \fmffreeze \fmfi{fermion}{vpath (__i3,__v3) shifted ( 0, 0)} \fmfi{fermion}{vpath (__v3,__o3) shifted ( 0, 0)} \fmfi{fermion}{vpath (__i3,__v3) shifted ( 0,-8)} \fmfi{fermion}{vpath (__v3,__o3) shifted ( 0,-8)} \fmfi{fermion}{vpath (__i3,__v3) shifted ( 0,-16)} \fmfi{fermion}{vpath (__v3,__o3) shifted ( 0,-16)} \end{fmfgraph} \end{fmffile}
To gain more control over the quark lines and their arrows, put the following snippet in your preamble to define a new quark line:
\newcommand{\quark}[5]{ \fmfcmd{style_def quark#1 expr p = cdraw subpath (#2) of p shifted (#4); cfill (tarrow (p,(xpart(#2)+ypart(#2))*0.48*#3)) shifted (#4); enddef;} \fmf{quark#1,tension=0}{#5}}
It takes five arguments (#1
–#5
):
0
and 1
, e.g. {0.1,0.9}
, which allow you to shorten or lengthen either ends of the quark line;1
to define the arrow head's position on the quark line;{1,-2}
, to shift the line;\begin{fmffile}{feyngraph} \begin{fmfgraph}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson}{v1,v3} % neutron \fmf{phantom}{i3,v3,o3} \fmffreeze \quark{qai}{0.0,1.0}{0.94}{ 0, 0}{i3,v3} \quark{qbi}{0.0,1.0}{1.00}{ 0, -8}{i3,v3} \quark{qci}{0.0,1.0}{1.06}{ 0,-16}{i3,v3} \quark{qao}{0.0,1.0}{1.06}{ 0, 0}{v3,o3} \quark{qbo}{0.0,1.0}{1.00}{ 0, -8}{v3,o3} \quark{qco}{0.0,1.0}{0.94}{ 0,-16}{v3,o3} \end{fmfgraph} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson}{v1,v3} % neutron \fmf{phantom}{i3,v3,o3} \fmffreeze \quark{qai}{0.0 ,1.0 }{0.96}{0, 0}{i3,v3} \quark{qbi}{0.04,1.0 }{1.00}{0, -8}{i3,v3} \quark{qci}{0.08,1.0 }{1.04}{0,-16}{i3,v3} \quark{qao}{0.0 ,1.0 }{1.04}{0, 0}{v3,o3} \quark{qbo}{0.0 ,0.96}{1.00}{0, -8}{v3,o3} \quark{qco}{0.0 ,0.92}{0.96}{0,-16}{v3,o3} \end{fmfgraph} \end{fmffile}
To include unique labels for each quark line, extend our \quark
command:
\newcommand{\quark}[7]{ \fmfcmd{style_def quarkl#1 expr p = cdraw subpath (#4) of p shifted (#6); cfill (tarrow (p,(xpart(#4)+ypart(#4))*0.48*#5)) shifted (#6); if length("#3")=2: label.#3(btex {#2} etex, point ypart(#4) of p shifted (#6)) fi; % rt if length("#3")=3: label.#3(btex {#2} etex, point xpart(#4) of p shifted (#6)) fi; % lft enddef;} \fmf{quarkl#1,tension=0}{#7}}
with seven arguments (#1
–#7
):
lft
(left) or rt
(right) with no spaces;0
and 1
, e.g. {0.1,0.9}
, which allow you to shorten or lengthen either ends of the quark line;1
to define the arrow head's position on the quark line;{1,-2}
, to shift the line;\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{e$^-$}{o1} \fmflabel{$\bar\nu_\text{e}$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson,label=W,label.side=right}{v1,v3} % neutron \fmf{phantom}{i3,v3,o3} \fmffreeze \quark{qai}{d}{lft}{0,1}{0.90}{0, 0}{i3,v3} \quark{qbi}{d}{lft}{0,1}{1.00}{0,-10}{i3,v3} \quark{qci}{u}{lft}{0,1}{1.10}{0,-20}{i3,v3} \quark{qao}{u} {rt}{0,1}{1.10}{0, 0}{v3,o3} \quark{qbo}{d} {rt}{0,1}{1.00}{0,-10}{v3,o3} \quark{qco}{u} {rt}{0,1}{0.90}{0,-20}{v3,o3} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{e$^-$}{o1} \fmflabel{$\bar\nu_\text{e}$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson,label=W,l.s=right}{v1,v3} % neutron \fmf{phantom}{i3,v3,o3} \fmffreeze \quark{qai}{d}{lft}{0.0 ,1.0 }{0.94}{0, 0}{i3,v3} \quark{qbi}{d}{lft}{0.04,1.0 }{1.00}{0,-10}{i3,v3} \quark{qci}{u}{lft}{0.08,1.0 }{1.06}{0,-20}{i3,v3} \quark{qao}{u} {rt}{0.0 ,1.0 }{1.06}{0, 0}{v3,o3} \quark{qbo}{d} {rt}{0.0 ,0.96}{1.00}{0,-10}{v3,o3} \quark{qco}{u} {rt}{0.0 ,0.92}{0.94}{0,-20}{v3,o3} \end{fmfgraph*} \end{fmffile}
We can add curly braces of custom size (see this section):
\usepackage{scalerel} \newcommand{\mylbrace}[2]{\vspace{#2pt}\hspace{2pt}\scaleleftright[\dimexpr6pt+#1\dimexpr0.11pt]{\lbrace}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{.}} \newcommand{\myrbrace}[2]{\vspace{#2pt}\scaleleftright[\dimexpr6pt+#1\dimexpr0.11pt]{.}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{\rbrace}\hspace{2pt}}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{e$^-$}{o1} \fmflabel{$\bar\nu_\text{e}$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson,label=W,label.side=right}{v1,v3} % neutron \fmfv{l=$\text{n}^0$\mylbrace{32}{-9},l.d=16,l.a=-160}{i3} \fmfv{l=\myrbrace{32}{-9}$\text{p}^+$,l.d=16,l.a=-20}{o3} \fmf{phantom}{i3,v3,o3} \fmffreeze \quark{qai}{d}{lft}{0,1}{0.90}{0, 0}{i3,v3} \quark{qbi}{d}{lft}{0,1}{1.00}{0,-10}{i3,v3} \quark{qci}{u}{lft}{0,1}{1.10}{0,-20}{i3,v3} \quark{qao}{u} {rt}{0,1}{1.10}{0, 0}{v3,o3} \quark{qbo}{d} {rt}{0,1}{1.00}{0,-10}{v3,o3} \quark{qco}{u} {rt}{0,1}{0.90}{0,-20}{v3,o3} \end{fmfgraph*} \end{fmffile}
With curved lines:
\newcommand{\quark}[9]{ \fmfcmd{input TEX; style_def quark#1 expr p = pair a, b, m, n; if "#6"="left": a = point 0 of p; b = point length(p) of p + (#7); m = point length(p) of p + (#8); path q; q = a{m-a}..tension ypart(#4)..{right}b; label.lft(btex #2 etex, point xpart(#3) of q shifted (#5)) fi; if "#6"="right": a = point 0 of p + (#7); b = point length(p) of p; m = point 0 of p + (#8); path q; q = a{right}..tension ypart(#4)..{b-m}b; label.rt(btex #2 etex, point ypart(#3) of q shifted (#5)) fi; cdraw subpath (#3) of q shifted (#5); cfill (tarrow (q,(xpart(#3)+ypart(#3))*0.46*xpart(#4))) shifted (#5); enddef;} \fmf{quark#1,tension=0}{#9}}
with seven arguments (#1
–#9
):
0
and 1
, e.g. {0.1,0.9}
, which allow you to shorten or lengthen either ends of the quark line;1
to define the arrow head's position on the quark line, second value around 1
to set tension of curve (infinity
for straight lines);{1,-2}
, to shift the line;\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{e$^-$}{o1} \fmflabel{$\bar\nu_\text{e}$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson}{v3,v1} % neutron \fmf{phantom}{i3,v3,o3} % to help \quark \fmffreeze \quark{qai}{d}{0.0 ,1.0 }{1.00,infinity}{0, 0}{left} {0, 0}{0,0}{i3,v3} \quark{qbi}{d}{0.04,1.0 }{1.00,1} {0, -9}{left} {0,-6}{0,0}{i3,v3} \quark{qci}{u}{0.08,1.0 }{1.02,1} {0,-18}{left} {0,-6}{0,0}{i3,v3} \quark{qao}{u}{0.0 ,1.0 }{1.00,infinity}{0, 0}{right}{0, 0}{0,0}{v3,o3} \quark{qbo}{d}{0.0 ,0.96}{0.89,1} {0, -9}{right}{0,-6}{0,0}{v3,o3} \quark{qco}{u}{0.0 ,0.92}{0.84,1} {0,-18}{right}{0,-6}{0,0}{v3,o3} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{e$^-$}{o1} \fmflabel{$\bar\nu_\text{e}$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson}{v3,v1} % neutron \fmf{phantom}{i3,v3,o3} % to help \quark \fmffreeze \fmfv{l=$\text{n}^0$\mylbrace{30}{-7},l.d=16,l.a=-160}{i3} \fmfv{l=\myrbrace{30}{-7}$\text{p}^+$,l.d=16,l.a=-20}{o3} \quark{qai}{d}{0,1}{1.00,infinity}{0, 0}{left} {0, 0}{0,0}{i3,v3} \quark{qbi}{d}{0,1}{1.05,1} {0, -9}{left} {0,-6}{0,0}{i3,v3} \quark{qci}{u}{0,1}{1.12,1} {0,-18}{left} {0,-6}{0,0}{i3,v3} \quark{qao}{u}{0,1}{1.00,infinity}{0, 0}{right}{0, 0}{0,0}{v3,o3} \quark{qbo}{d}{0,1}{0.85,1} {0, -9}{right}{0,-6}{0,0}{v3,o3} \quark{qco}{u}{0,1}{0.77,1} {0,-18}{right}{0,-6}{0,0}{v3,o3} \end{fmfgraph*} \end{fmffile}
For deep inelastic scattering, also check out this DESY page with a gallery of Feynman diagrams.
\fmfi
allows to make lines that can be shifted and scaled, so you can make multiple line representing a proton. Also note that the \fmfblob
hide the loose ends of these lines, as long as they are large enough and the lines are drawn before the blob.
Take for example elastic electron-proton scattering.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{ip,il} \fmfright{op,ol} \fmfset{arrow_len}{10} % lepton \fmf{fermion}{il,vl,ol} % photon \fmf{photon,tension=1}{vl,vp} % proton \fmf{phantom}{ip,vp,op} \fmffreeze \fmf{phantom}{ip,vp} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-1.7, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted ( 1.7,-6)} \fmfblob{25}{vp} \fmf{phantom}{vp,op} \fmfi{fermion}{vpath (__vp,__op) scaled 1.05 shifted (-5.1, 6)} \fmfi{fermion}{vpath (__vp,__op) scaled 1.05 shifted (-7.0, 0)} \fmfi{fermion}{vpath (__vp,__op) scaled 1.05 shifted (-8.9,-6)} \fmffreeze \end{fmfgraph*} \end{fmffile}
Electron-proton deep inelastic scattering:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{ip,il} \fmfright{x1,x2,x3,x4,o2,o3,o4,ol} \fmfset{arrow_len}{10} % lepton \fmf{fermion}{il,vl,ol} % photon \fmf{photon,tension=1}{vl,vp} % proton \fmf{phantom}{ip,vp,x1} \fmffreeze \fmf{phantom}{ip,vp} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-1.8, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted ( 1.8,-6)} % X \fmfshift{15 left}{x1,x2,x3,x4} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmf{phantom}{vp,x4} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.02 shifted ( 0.0,-6.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.00 shifted ( 0.0,-2.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 0.98 shifted ( 0.0, 2.0)} \fmfi{fermion}{vpath (__vp,__x4) scaled 0.96 shifted ( 0.0, 6.0)} \fmfblob{25}{vp} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,100) \fmfleft{i1,ip,i2,il,i3} \fmfright{x1,x2,x3,x4,o2,o3,o4,ol,o5} \fmfset{arrow_len}{10} % photon \fmf{photon,tension=0.25}{vl,vp} % lepton \fmf{fermion}{il,vl,ol} % proton \fmf{phantom}{ip,vp,x2} \fmffreeze \fmf{phantom}{ip,vp} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % X \fmfshift{15 left}{x1,x2,x3,x4} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmf{phantom}{vp,x4} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.08 shifted ( 0.0,-10.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.06 shifted ( 0.0,-5.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.04 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vp,__x4) scaled 1.02 shifted ( 0.0, 5.0)} \fmfblob{25}{vp} \end{fmfgraph*} \end{fmffile}
Deep inelastic scattering with a parton:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,100) \fmfleft{ip,il} \fmfright{x1,x2,x3,o1,o2,o3,o4,ol} \fmfset{arrow_len}{10} % lepton \fmf{fermion}{il,vl} \fmf{fermion}{vl,ol} \fmf{phantom,tension=0.6}{vl,vp} % proton \fmf{phantom,tension=1}{ip,vp,x1} \fmffreeze \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-1.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted ( 1.4,-6)} \fmfblob{25}{vp} % X \fmf{fermion}{vp,x1} \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x2) scaled 0.98 shifted (0,2.2)} \fmfi{fermion}{vpath (__vp,__x3) scaled 0.92 shifted (0,4.5)} \fmffreeze % photon \fmf{photon}{vl,v} % parton \fmf{fermion}{vp,v,o2} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,140) \fmfleft{i1,ip,i2,il,i3} \fmfright{o1,x1,x2,x3,x4,o3,o3,o4,o5,ol,o5} \fmfset{arrow_len}{10} % photon \fmf{phantom,tension=0.30}{vl,vp} % lepton \fmf{fermion}{il,vl,ol} % proton \fmf{phantom}{ip,vp,x1} \fmffreeze \fmf{phantom}{ip,vp} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % X \fmfshift{15 left}{x1,x2,x3,x4} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmf{phantom}{vp,x4} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.08 shifted ( 0.0,-8.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.06 shifted ( 0.0,-2.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.04 shifted ( 0.0, 4.0)} \fmfblob{25}{vp} % parton \fmf{photon,tension=1}{vl,v} \fmf{fermion,tension=1}{vp,v,o3} \end{fmfgraph*} \end{fmffile}
Defining a new command in the preamble, we can add a curly brace of custom size (see this section):
\usepackage{scalerel} \newcommand{\mybrace}[1]{\scaleleftright[\dimexpr6pt+#1\dimexpr0.11pt]{.}{\rule[\dimexpr5pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{\rbrace}\hspace{-1pt}}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,100) \fmfleft{ip,il} \fmfright{x1,x2,x3,o1,o2,o3,o4,ol} \fmfset{arrow_len}{10} % lepton \fmflabel{$\text{e}^-$}{il} \fmflabel{$\text{e}^-$}{ol} \fmf{fermion,label=$k$, label.side=left}{il,vl} \fmf{fermion,label=$k'$,label.side=left}{vl,ol} \fmf{phantom,tension=0.6}{vl,vp} % proton \fmfv{l=$\text{p}^+$,l.a=-160}{ip} % l.a = label.angle \fmf{phantom,tension=1}{ip,vp,x1} \fmffreeze \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01} \fmfi{fermion,label=$p$,label.side=left} {vpath (__ip,__vp) scaled 1.01 shifted (-1.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted ( 1.4,-6)} \fmfblob{25}{vp} % X \fmfv{l=\mybrace{40} $X$,l.a=10}{x2} \fmf{fermion}{vp,x1} \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x2) scaled 0.98 shifted (0,2.2)} \fmfi{fermion}{vpath (__vp,__x3) scaled 0.92 shifted (0,4.5)} \fmffreeze % photon \fmf{photon,label=\vspace{-4pt}\hspace{5pt}{$q$},label.side=left}{vl,v} % parton \fmf{fermion,label=$xp$,label.side=left}{vp,v} \fmf{fermion}{v,o2} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,140) \fmfleft{i1,ip,i2,il,i3} \fmfright{o1,x1,x2,x3,x4,o3,o3,o4,o5,ol,o5} \fmfset{arrow_len}{10} \fmf{phantom,tension=0.29}{vl,vp} % lepton \fmflabel{$\text{e}^-$}{il} \fmflabel{$\text{e}^-$}{ol} \fmf{fermion,label=$k$, label.side=left}{il,vl} \fmf{fermion,label=$k'$,label.side=left}{vl,ol} % proton \fmfv{l=$\text{p}^+$,l.a=-160}{ip} \fmf{phantom}{ip,vp,x1} \fmffreeze \fmf{phantom}{ip,vp} \fmfi{fermion,label=$p$,label.side=left} {vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % X \fmfv{l=\mybrace{50}$X$,l.d=20,l.a=-2}{x2} \fmfshift{12 left}{x1,x2,x3,x4} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmf{phantom}{vp,x4} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.08 shifted ( 0.0,-8.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.06 shifted ( 0.0,-2.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.04 shifted ( 0.0, 4.0)} \fmfblob{25}{vp} % photon & parton \fmf{photon,tension=1,label=\vspace{-4pt}\hspace{5pt}{$q$},label.side=left}{vl,v} \fmf{fermion,label=$xp$,label.side=left}{vp,v} \fmf{fermion}{v,o3} \end{fmfgraph*} \end{fmffile}
Examples of leptonic and hadronic tau lepton decay
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,90) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % boson \fmf{boson,label=$\text{W}^\pm$,label.side=left}{v3,v1} % leptons \fmflabel{$\tau^\pm$}{i3} \fmflabel{$\nu_\tau$}{o3} \fmf{fermion}{i3,v3,o3} % decay \fmflabel{$\ell^\pm$}{o1} \fmflabel{$\nu_\ell$}{o2} \fmf{fermion,tension=0}{o2,v1,o1} \fmf{phantom}{i1,v1,o1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,90) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % boson \fmf{boson,label=$\text{W}^\pm$,label.side=left}{v3,v1} % leptons \fmflabel{$\tau^\pm$}{i3} \fmflabel{$\nu_\tau$}{o3} \fmf{fermion}{i3,v3,o3} % decay \fmflabel{$q$}{o1} \fmflabel{$\overline{q}'$}{o2} \fmf{fermion,tension=0}{o2,v1,o1} \fmf{phantom}{i1,v1,o1} \fmffreeze \fmfv{l.d=82,l.a=12,l={\mybrace{68}{-28}$\pi^\pm$,, $\text{a}_1^\pm$,, $\rho^\pm$,, $\ldots$}}{v1} \end{fmfgraph*} \end{fmffile}
Where \mybrace
is defined in the preamble as (see this section):
\usepackage{scalerel} \newcommand{\mybrace}[2]{\vspace{#2pt}\scaleleftright[\dimexpr5pt+#1\dimexpr0.06pt]{.}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{\rbrace}\hspace{4pt}}
Examples of B meson decay, using the following code in the preamble.
\newcommand{\quark}[9]{ \fmfcmd{ %input TEX; input latexmp; setupLaTeXMP(packages="amssymb,amsmath"); style_def quark#1 expr p = pair a, b, m, n; if (substring (0,4) of "#6" = "left") or (substring (1,5) of "#6" = "left"): a = point 0 of p; b = point length(p) of p + (#7); m = point length(p) of p + (#8); path q; q = a{m-a}..tension ypart(#4)..{right}b; label.lft(btex #2 etex, point xpart(#3) of q shifted (#5)) fi; if (substring (0,5) of "#6" = "right") or (substring (1,6) of "#6" = "right"): a = point 0 of p + (#7); b = point length(p) of p; m = point 0 of p + (#8); path q; q = a{right}..tension ypart(#4)..{b-m}b; label.rt(btex #2 etex, point ypart(#3) of q shifted (#5)) fi; cdraw subpath (#3) of q shifted (#5); if substring (0,1) of "#6" = "-": cfill (tarrow (reverse(q),(xpart(#3)+ypart(#3))*0.46*xpart(#4))) shifted (#5); else: cfill (tarrow (q,(xpart(#3)+ypart(#3))*0.46*xpart(#4))) shifted (#5); fi; enddef;} \fmf{quark#1,tension=0}{#9}} \usepackage{scalerel} \newcommand{\mylbrace}[2]{\vspace{#2pt}\hspace{4pt}\scaleleftright[\dimexpr6pt+#1\dimexpr0.11pt]{\lbrace}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{.}} \newcommand{\myrbrace}[2]{\vspace{#2pt}\scaleleftright[\dimexpr6pt+#1\dimexpr0.11pt]{.}{\rule[\dimexpr2pt-#1\dimexpr0.5pt]{-4pt}{#1pt}}{\rbrace}\hspace{4pt}}
Taking (b,q,c)
= (bbar,u,cbar)
, (b,ubar,c)
, (bbar,d,cbar)
, etc.:
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{$\ell^\pm$}{o1} \fmflabel{$\nu_\ell$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson,label=$\text{W}^\pm$,label.side=left}{v3,v1} % neutron \fmf{phantom}{i3,v3,o3} % to help \quark \fmffreeze \fmfv{l=\parbox{10mm}{\centering B meson}\mylbrace{26}{-3},l.d=16,l.a=-160}{i3} \fmfv{l=\myrbrace{26}{-3}\parbox{10mm}{\centering D meson},l.d=16,l.a=-20}{o3} %\fmfiv{l=$\overline{\text{b}}$,l.d=3,l.a=180}{vloc(__i3)} %\fmfiv{l=$\overline{\text{c}}$,l.d=3,l.a= 0}{vloc(__o3)} \quark{qai}{$b$}{0,1}{1.00,infinity}{0, 0}{left}{0, 0}{0,0}{i3,v3} \quark{qbi}{$q$}{0,1}{1.09,1} {0,-14}{left}{0,-6}{0,0}{i3,v3} \quark{qao}{$c$}{0,1}{1.00,infinity}{0, 0}{right}{0, 0}{0,0}{v3,o3} \quark{qbo}{$q$}{0,1}{0.84,1} {0,-14}{right}{0,-6}{0,0}{v3,o3} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,80) \fmfset{arrow_len}{10} \fmfstraight \fmfleft{i3,i1} \fmfright{o3,o2,o1} % fermions \fmflabel{$\ell^\pm$}{o1} \fmflabel{$\nu_\ell$}{o2} \fmf{phantom}{i1,v1,o1} \fmf{fermion,tension=0}{o2,v1,o1} % boson \fmf{boson,label=$\text{W}^\pm$,label.side=left}{v3,v1} % neutron \fmf{phantom}{i3,v3,o3} % to help \quark \fmffreeze \fmfv{l=\parbox{10mm}{\centering B meson}\mylbrace{26}{-2},l.d=16,l.a=-160}{i3} \fmfv{l=\myrbrace{26}{-2}\parbox{10mm}{\centering D meson},l.d=16,l.a=-20}{o3} \fmfiv{l=$\overline{\text{b}}$,l.d=3,l.a=180}{vloc(__i3)} \fmfiv{l=$\overline{\text{c}}$,l.d=3,l.a= 0}{vloc(__o3)} \quark{qai}{}{0,1}{1.00,infinity}{0, 0}{-left}{0, 0}{0,0}{i3,v3} \quark{qbi}{$q$}{0,1}{1.05,1} {0,-14}{left}{0,-6}{0,0}{i3,v3} \quark{qao}{}{0,1}{0.95,infinity}{0, 0}{-right}{0, 0}{0,0}{v3,o3} \quark{qbo}{$q$}{0,1}{0.85,1} {0,-14}{right}{0,-6}{0,0}{v3,o3} \end{fmfgraph*} \end{fmffile}
Here are some proton-proton collisions with hard processes. Note the use of \fmfshift
to shorten the proton debris lines, and make the hard process stick out, without changing the aspect ratio of diagram's other parts.
Full code for a multipage PDF including all figures below can be found here.
A generic proces:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,160) \fmfleft{i1,iq,i2,ip,i3} \fmfright{y1,y2,y3,o1,o2,o3,o4,o5,x3,x2,x1} \fmfset{arrow_len}{10} % skeleton \fmf{phantom,tension=0.50}{vq,vp} \fmf{phantom}{ip,vp,x1} \fmf{phantom}{iq,vq,y1} \fmffreeze % parton \fmf{fermion,tension=2,label=$x_1p_1$,label.side=right}{vp,v} \fmf{fermion,tension=2,label=$x_2p_2$,label.side=left}{vq,v} % hard interaction \fmf{phantom,tension=1}{v,o2} % to help \fmfi \fmf{phantom,tension=1}{v,o3} % to help \fmfi \fmf{phantom,tension=1}{v,o4} % to help \fmfi \fmffreeze \fmfi{fermion}{vpath (__v,__o2) scaled 1.01 shifted ( 0,-2)} \fmfi{fermion}{vpath (__v,__o3) scaled 1.01 shifted ( 0, 0)} \fmfi{fermion}{vpath (__v,__o4) scaled 1.01 shifted ( 0, 2)} \fmfblob{20}{v} % proton 1 \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{ip} \fmf{phantom}{ip,vp} \fmfi{fermion,l=$p_1$,l.s=left,l.d=8} {vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % proton 2 \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{iq} \fmf{phantom}{iq,vq} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion,l=$p_2$,l.s=right,l.d=8} {vpath (__iq,__vq) scaled 1.01 shifted (-2.4,-6)} % X 2 \fmfshift{25 left}{x1} \fmfshift{20 left}{x2,x3} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.0 shifted ( 0.0, 2.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.0 shifted ( 0.0,-2.0)} \fmfblob{25}{vp} % X 2 \fmfshift{25 left}{y1} \fmfshift{20 left}{y2,y3} \fmf{phantom}{vq,y1} % to help \fmfi \fmf{phantom}{vq,y2} % to help \fmfi \fmf{phantom}{vq,y3} % to help \fmfi \fmfi{fermion}{vpath (__vq,__y1) scaled 1.0 shifted ( 0.0,-2.0)} \fmfi{fermion}{vpath (__vq,__y2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted ( 0.0, 2.0)} \fmfblob{25}{vq} \end{fmfgraph*} \end{fmffile}
Drell-Yan:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,160) \fmfleft{i1,iq,i2,ip,i3} \fmfright{y1,y2,y3,o1,f1,o2,o3,o4,f2,o5,x3,x2,x1} \fmfset{arrow_len}{10} % skeleton \fmf{phantom,tension=0.48}{vq,vp} \fmf{phantom}{ip,vp,x1} \fmf{phantom}{iq,vq,y1} \fmffreeze % parton \fmfv{l=$x_1p_1$,l.a=-90,l.d=22}{vp} % cheat: actually a line label \fmfv{l=$x_2p_2$,l.a=90,l.d=22}{vq} % cheat: actually a line label \fmf{fermion,tension=1.6}{vp,v} \fmf{fermion,tension=1.6}{v,vq} % hard process \fmfshift{20 right}{f1,f2} \fmfv{l.a=-25,l.d=3,l=$\ell^+$}{f1} \fmfv{l.a=25,l.d=5,l=$\ell^-$}{f2} \fmf{boson,tension=2,label=$\text{Z}^0/\gamma^*$,label.side=left}{v,vf} \fmf{fermion,tension=2}{f1,vf,f2} % proton 1 \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{ip} \fmf{phantom}{ip,vp} \fmfi{fermion,l=$p_1$,l.s=left,l.d=8} {vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % proton 2 \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{iq} \fmf{phantom}{iq,vq} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion,l=$p_2$,l.s=right,l.d=8} {vpath (__iq,__vq) scaled 1.01 shifted (-2.4,-6)} % X 2 \fmfshift{25 left}{x1} \fmfshift{20 left}{x2,x3} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.0 shifted ( 0.0, 2.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.0 shifted ( 0.0,-2.0)} \fmfblob{25}{vp} % X 2 \fmfshift{25 left}{y1} \fmfshift{20 left}{y2,y3} \fmf{phantom}{vq,y1} % to help \fmfi \fmf{phantom}{vq,y2} % to help \fmfi \fmf{phantom}{vq,y3} % to help \fmfi \fmfi{fermion}{vpath (__vq,__y1) scaled 1.0 shifted ( 0.0,-2.0)} \fmfi{fermion}{vpath (__vq,__y2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted ( 0.0, 2.0)} \fmfblob{25}{vq} \end{fmfgraph*} \end{fmffile}
Higgs production via gluon-gluon fusion:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,160) \fmfleft{i1,iq,i2,ip,i3} \fmfright{y1,y2,y3,o1,o2,o3,o4,o5,x3,x2,x1} \fmfset{arrow_len}{10} \fmfset{curly_len}{8} % skeleton \fmf{phantom,tension=0.48}{vq,vp} \fmf{phantom}{ip,vp,x1} \fmf{phantom}{iq,vq,y1} \fmffreeze % parton \fmf{gluon,tension=1.4,label=$x_1p_1$,label.side=left}{v1,vp} \fmf{gluon,tension=1.4,label=$x_2p_2$,label.side=left}{vq,v2} % hard process \fmfshift{20 right}{o3} \fmfv{l=H}{o3} \fmf{fermion,tension=0.3,arrow.size=2mm}{v1,v2} \fmf{fermion,tension=2.0}{v1,vh,v2} \fmf{dashes,tension=2.5}{vh,o3} % proton 1 \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{ip} \fmf{phantom}{ip,vp} \fmfi{fermion,l=$p_1$,l.s=left,l.d=8} {vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion}{vpath (__ip,__vp) scaled 1.01 shifted (-2.4,-6)} % proton 2 \fmfv{l=$\text{p}^+$,l.a=180,l.d=10}{iq} \fmf{phantom}{iq,vq} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 6)} \fmfi{fermion}{vpath (__iq,__vq) scaled 1.01 shifted (-2.4, 0)} \fmfi{fermion,l=$p_2$,l.s=right,l.d=8} {vpath (__iq,__vq) scaled 1.01 shifted (-2.4,-6)} % X 2 \fmfshift{25 left}{x1} \fmfshift{20 left}{x2,x3} \fmf{phantom}{vp,x1} % to help \fmfi \fmf{phantom}{vp,x2} % to help \fmfi \fmf{phantom}{vp,x3} % to help \fmfi \fmfi{fermion}{vpath (__vp,__x1) scaled 1.0 shifted ( 0.0, 2.0)} \fmfi{fermion}{vpath (__vp,__x2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vp,__x3) scaled 1.0 shifted ( 0.0,-2.0)} \fmfblob{25}{vp} % X 2 \fmfshift{25 left}{y1} \fmfshift{20 left}{y2,y3} \fmf{phantom}{vq,y1} % to help \fmfi \fmf{phantom}{vq,y2} % to help \fmfi \fmf{phantom}{vq,y3} % to help \fmfi \fmfi{fermion}{vpath (__vq,__y1) scaled 1.0 shifted ( 0.0,-2.0)} \fmfi{fermion}{vpath (__vq,__y2) scaled 1.0 shifted ( 0.0, 0.0)} \fmfi{fermion}{vpath (__vq,__y3) scaled 1.0 shifted ( 0.0, 2.0)} \fmfblob{25}{vq} \end{fmfgraph*} \end{fmffile}
Diffractive processes involving a Pomeron, after this ALICE, this CMS (FSQ-15-005) and this ATLAS (ATL-PHYS-PROC-2016-079) paper. Note the Pomeron symbol is made with ${\rm I\!P}$
instead of ${\mathbb{P}$
.
Full code for a multipage PDF including all figures below can be found here.
Elastic scattering with Pomeron exchange:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{iq,ip} \fmfright{oq,op} % proton 1 \fmflabel{$\text{p}^+$}{ip} \fmflabel{$\text{p}^+$}{op} \fmf{fermion,width=1.5}{ip,vp,op} % proton 2 \fmflabel{$\text{p}^+$}{iq} \fmflabel{$\text{p}^+$}{oq} \fmf{fermion,width=1.5}{iq,vq,oq} % pomeron \fmfv{decor.shape=circle,decor.filled=full,decor.size=6}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6}{vq} \fmf{double,tension=0.9,label=${\rm I\!P}$,label.side=right}{vp,vq} \end{fmfgraph*} \end{fmffile}
Single diffraction (SD):
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{iq,ip} \fmfright{oq,op} % proton 1 \fmflabel{$\text{p}^+$}{ip} \fmflabel{$\text{p}^+$}{op} \fmf{fermion,width=1.5}{ip,vp,op} % proton 2 \fmflabel{$\text{p}^+$}{iq} \fmf{fermion,width=1.5}{iq,vq} \fmf{phantom}{vq,oq} % pomeron \fmf{double,tension=0.9,label=${\rm I\!P}$,label.side=right}{vp,vq} \fmffreeze % single diffraction \fmfshift{5 up}{oq} \fmfv{l=Y,l.a=-10,l.d=12}{oq} \fmfi{fermion}{vpath (__vq,__oq) scaled 1.01 shifted(4, 2) rotatedaround(vloc(__vq), 10)} \fmfi{fermion}{vpath (__vq,__oq) scaled 1.01 shifted(4, 0) rotatedaround(vloc(__vq), 0)} \fmfi{fermion}{vpath (__vq,__oq) scaled 1.01 shifted(4,-2) rotatedaround(vloc(__vq),-10)} % vertices \fmfv{decor.shape=circle,decor.filled=full,decor.size=6}{vp} \fmfblob{20}{vq} \end{fmfgraph*} \end{fmffile}
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{iq,ip} \fmfright{oq,op} % proton 1 \fmflabel{$\text{p}^+$}{ip} \fmf{fermion,width=1.5}{ip,vp} \fmf{phantom}{vp,op} % proton 2 \fmflabel{$\text{p}^+$}{iq} \fmflabel{$\text{p}^+$}{oq} \fmf{fermion,width=1.5}{iq,vq,oq} % pomeron \fmf{double,tension=0.9,label=${\rm I\!P}$,label.side=right}{vp,vq} \fmffreeze % single diffraction \fmfshift{5 down}{op} \fmfv{l=X,l.a=10,l.d=12}{op} \fmfi{fermion}{vpath (__vp,__op) scaled 1.01 shifted(4, 2) rotatedaround(vloc(__vp), 10)} \fmfi{fermion}{vpath (__vp,__op) scaled 1.01 shifted(4, 0) rotatedaround(vloc(__vp), 0)} \fmfi{fermion}{vpath (__vp,__op) scaled 1.01 shifted(4,-2) rotatedaround(vloc(__vp),-10)} % vertices \fmfv{decor.shape=circle,decor.filled=full,decor.size=6}{vp} \fmfblob{20}{vp} \end{fmfgraph*} \end{fmffile}
Double diffraction (DD):
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{iq,ip} \fmfright{oq,op} % proton 1 \fmflabel{$\text{p}^+$}{ip} \fmf{fermion,width=1.5}{ip,vp} \fmf{phantom}{vp,op} % proton 2 \fmflabel{$\text{p}^+$}{iq} \fmf{fermion,width=1.5}{iq,vq} \fmf{phantom}{vq,oq} % pomeron \fmf{double,tension=0.9,label=${\rm I\!P}$,label.side=right}{vp,vq} \fmffreeze % double diffraction \fmfshift{5 down}{op} \fmfshift{5 up}{oq} \fmfv{l=X,l.a=10,l.d=12}{op} \fmfv{l=Y,l.a=-10,l.d=12}{oq} \fmfi{fermion}{vpath (__vp,__op) scaled 1.01 shifted(4, 2) rotatedaround(vloc(__vp), 10)} \fmfi{fermion}{vpath (__vp,__op) scaled 1.01 shifted(4, 0) rotatedaround(vloc(__vp), 0)} \fmfi{fermion}{vpath (__vp,__op) scaled 1.01 shifted(4,-2) rotatedaround(vloc(__vp),-10)} \fmfi{fermion}{vpath (__vq,__oq) scaled 1.01 shifted(4, 2) rotatedaround(vloc(__vq), 10)} \fmfi{fermion}{vpath (__vq,__oq) scaled 1.01 shifted(4, 0) rotatedaround(vloc(__vq), 0)} \fmfi{fermion}{vpath (__vq,__oq) scaled 1.01 shifted(4,-2) rotatedaround(vloc(__vq),-10)} % vertices \fmfblob{20}{vp} \fmfblob{20}{vq} \end{fmfgraph*} \end{fmffile}
Central diffraction:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{iq,ip} \fmfright{oq,oc,op} % proton 1 \fmflabel{$\text{p}^+$}{ip} \fmflabel{$\text{p}^+$}{op} \fmf{fermion,width=1.5}{ip,vp,op} % proton 2 \fmflabel{$\text{p}^+$}{iq} \fmflabel{$\text{p}^+$}{oq} \fmf{fermion,width=1.5}{iq,vq,oq} % pomeron \fmfv{decor.shape=circle,decor.filled=full,decor.size=6}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6}{vq} \fmf{double,tension=0.9,label=${\rm I\!P}$,label.side=right}{vp,v,vq} \fmffreeze % single diffraction \fmfv{l=Z,l.a=0,l.d=12}{oc} \fmf{phantom}{v,oc} \fmfshift{12 left}{oc} \fmfi{fermion}{vpath (__v,__oc) scaled 1.01 shifted(4, 2) rotatedaround(vloc(__v), 10)} \fmfi{fermion}{vpath (__v,__oc) scaled 1.01 shifted(4, 0) rotatedaround(vloc(__v), 0)} \fmfi{fermion}{vpath (__v,__oc) scaled 1.01 shifted(4,-2) rotatedaround(vloc(__v),-10)} \fmfblob{20}{v} \end{fmfgraph*} \end{fmffile}
Inelastic and non-diffractive:
\large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,80) \fmfleft{iq,ip} \fmfright{o} % proton 1 \fmflabel{$\text{p}^+$}{ip} \fmf{fermion,width=1.5}{ip,v} % proton 2 \fmflabel{$\text{p}^+$}{iq} \fmf{fermion,width=1.5}{iq,v} \fmf{phantom,tension=2}{v,o} \fmffreeze % X \fmfv{l=X,l.a=0,l.d=16}{o} \fmfi{fermion}{vpath (__v,__o) scaled 1.01 shifted(6, 4) rotatedaround(vloc(__v), 24)} \fmfi{fermion}{vpath (__v,__o) scaled 1.01 shifted(6, 2) rotatedaround(vloc(__v), 12)} \fmfi{fermion}{vpath (__v,__o) scaled 1.01 shifted(6, 0) rotatedaround(vloc(__v), 0)} \fmfi{fermion}{vpath (__v,__o) scaled 1.01 shifted(6,-2) rotatedaround(vloc(__v),-12)} \fmfi{fermion}{vpath (__v,__o) scaled 1.01 shifted(6,-4) rotatedaround(vloc(__v),-24)} \fmfblob{30}{v} \end{fmfgraph*} \end{fmffile}
The text colors in the diagrams below are defined with the following in the preamble:
\usepackage{xcolor} \definecolor{myblue}{rgb}{.1,.1,.7} \definecolor{mygreen}{rgb}{.1,.6,.1}
Tree level of photon-tautau vertex:
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfbottom{f2,f1} \fmftop{g} \fmf{boson,t=1}{g,v} \fmf{fermion,f=(.1,,.6,,.1)}{f2,v1} \fmf{plain,f=(.1,,.6,,.1),t=0.9}{v1,v,v2} \fmf{fermion,f=(.1,,.6,,.1)}{v2,f1} \fmfv{l.a=-50,l.d=8,l=$\gamma$}{g} \fmfv{l.a=-25,l=\color{mygreen}$\tau$}{f1} \fmfv{l.a=-155,l=\color{mygreen}$\tau$}{f2} \fmffreeze \fmf{boson,right=0.36,label=$\gamma$,l.s=right}{v1,v2} \end{fmfgraph*} \end{fmffile}
Photon loop:
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfbottom{f2,f1} \fmftop{g} \fmf{boson,t=1}{g,v} \fmf{fermion,f=(.1,,.6,,.1)}{f2,v1} \fmf{plain,f=(.1,,.6,,.1),t=0.9}{v1,v,v2} \fmf{fermion,f=(.1,,.6,,.1)}{v2,f1} \fmfv{l.a=-50,l.d=8,l=$\gamma$}{g} \fmfv{l.a=-25,l=\color{mygreen}$\tau$}{f1} \fmfv{l.a=-155,l=\color{mygreen}$\tau$}{f2} \fmffreeze \fmf{boson,right=0.36,label=$\gamma$,l.s=right}{v1,v2} \end{fmfgraph*} \end{fmffile}
With vacuum polarization quark loop:
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(160,120) \fmfbottom{f2,f1} \fmftop{g} \fmf{boson,t=1}{g,v} \fmf{fermion,f=(.1,,.6,,.1)}{f2,v1} \fmf{fermion,f=(.1,,.6,,.1),t=0.6}{v1,v,v2} \fmf{fermion,f=(.1,,.6,,.1)}{v2,f1} \fmfv{l.a=-50,l.d=8,l=$\gamma$}{g} \fmfv{l.a=-25,l=\color{mygreen}$\tau$}{f1} \fmfv{l.a=-155,l=\color{mygreen}$\tau$}{f2} \fmffreeze \fmf{boson,t=2}{v1,vl1} \fmf{boson,t=2}{vl2,v2} \fmf{fermion,left=1,tension=1,label=\Large$q$}{vl1,vl2,vl1} \end{fmfgraph*} \end{fmffile}
Vertex with blob:
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfbottom{f2,f1} \fmftop{g} \fmf{boson,t=1.3}{g,v} \fmf{fermion,f=(.1,,.6,,.1)}{f2,v,f1} \fmfv{l.a=-25,l=\color{mygreen}$\tau$}{f1} \fmfv{l.a=-155,l=\color{mygreen}$\tau$}{f2} \fmfv{decor.shape=circle,decor.filled=shaded, decor.size=28,f=(.1,,.1,,.7)}{v} \fmfv{l.a=-50,l.d=8,l=$\gamma$}{g} \end{fmfgraph*} \end{fmffile}
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfbottom{f2,f1} \fmftop{g} \fmf{boson,t=1.3}{g,v} \fmf{fermion,f=(.1,,.6,,.1)}{f2,v,f1} \fmfv{l.a=-50,l.d=8,l=$\gamma$}{g} \fmfv{l.a=-25,l=\color{mygreen}$\tau$}{f1} \fmfv{l.a=-155,l=\color{mygreen}$\tau$}{f2} \fmfv{decor.shape=circle,decor.filled=empty,decor.size=35, f=(.1,,.1,,.7),b=(.92,,.92,,.98),l=\large\color{myblue}$g-2$,l.a=0,l.d=0}{v} \end{fmfgraph*} \end{fmffile}
\LARGE \begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,100) \fmfbottom{f2,f1} \fmftop{g} \fmf{boson,t=1}{g,v} \fmf{fermion,f=(.1,,.6,,.1)}{f2,v1} \fmf{dashes,left=0.48,t=0.7}{v1,v} \fmf{dashes,left=0.48,t=0.7,l.d=1pt,label=\Large slepton}{v,v2} \fmf{fermion,f=(.1,,.6,,.1)}{v2,f1} \fmf{phantom,t=0.3}{v2,v1} \fmfv{l.a=-25,l=\color{mygreen}$\tau$}{f1} \fmfv{l.a=-155,l=\color{mygreen}$\tau$}{f2} \fmffreeze \fmf{fermion,l.s=right,l.d=4,l.s=right, label=\huge$\substack{\text{dark}\\\text{matter}}$}{v1,v2} \fmfv{l.a=-50,l.d=8,l=$\gamma$}{g} \end{fmfgraph*} \end{fmffile}
Some examples of lepton flavor violating (LFV) decays of heavy leptons (muon, tau), which is possible in the Standard Model thanks to neutrino oscillations, but still heavily suppressed due to the small neutrino masses.
LVF decay of a heavy leptons (muon, tau) to a lepton plus photon.
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(170,50) \fmfleft{i1,i2} \fmfright{o1,o2} \fmftop{t1,t2} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{plain,l.d=3,label=$\nu_\ell$\;,t=1.5}{v1,x} % left neutrino line \fmf{plain,l.d=3,label=\;$\nu_{\ell'}$,t=1.5}{x,v2} % right neutrino line \fmf{fermion}{v2,o1} % lepton line out \fmfv{decor.shape=cross,decor.size=10}{x} % cross \fmffreeze % loop \fmf{phantom,t=1}{vl,i2} % support left \fmf{phantom,t=1.8}{vl,vr} % support middle \fmf{phantom,t=1}{vr,o2} % support right \fmf{boson,left=0.25,t=1.2}{v1,vl,vr,v2} % loop % photon \fmfshift{30 left}{t2} \fmf{boson,t=0}{vr,t2} % photon % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=8,l.a=70,l=$\mathrm{W}^-$}{vl} \fmfv{l.d=5,l.a=15,l=$\gamma$}{t2} \end{fmfgraph*} \end{fmffile}
LVF decay of a heavy leptons (muon, tau) to a three leptons, which proceeds through a penguin diagram.
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(140,60) \fmfstraight \fmfleft{i1,i2,i3} \fmfright{o1,o2,o3} \fmftop{t1,t2} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{plain,l.d=3,label=$\nu_\ell$\;,t=1.5}{v1,x} % left neutrino line \fmf{plain,l.d=3,label=\;$\nu_{\ell'}$,t=1.5}{x,v2} % right neutrino line \fmf{fermion}{v2,o1} % lepton line out \fmfv{decor.shape=cross,decor.size=10}{x} % cross \fmffreeze % loop \fmf{phantom,t=1.7}{vl,i2} % support left \fmf{phantom,t=2.4}{vl,vr} % support middle \fmf{phantom,t=1.7}{vr,o2} % support right \fmf{boson,left=0.25,t=0.7}{v1,vl,vr,v2} % loop \fmffreeze % photon \fmf{phantom,t=0.9}{t1,vg} % support \fmfshift{5 right}{o2} \fmfshift{5 right}{o3} \fmf{boson,t=1,l.d=4,label=$\gamma$}{vr,vg} % photon \fmf{fermion,t=1.8}{o3,vg,o2} % fermion % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=5,l.a=-10,l=$\ell'^-$}{o2} \fmfv{l.d=5,l.a=20,l=$\ell'^+$}{o3} \fmfv{l.d=8,l.a=70,l=$\mathrm{W}^-$}{vl} \end{fmfgraph*} \end{fmffile}
LVF decay of a heavy leptons (muon, tau) to a lepton and a photon through a LQ mediator.
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(170,50) \fmfleft{i1,i2} \fmfright{o1,o2} \fmftop{t1,t2} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{fermion,l.d=6,label=$q$,t=0.75}{v1,v2} % quark line \fmf{fermion}{v2,o1} % lepton line out \fmffreeze % loop \fmf{phantom,t=1}{vl,i2} % support left \fmf{phantom,t=1.8}{vl,vr} % support middle \fmf{phantom,t=1}{vr,o2} % support right \fmf{boson,left=0.25,t=1.2}{v1,vl,vr,v2} % loop % photon \fmfshift{30 left}{t2} \fmf{boson,t=0}{vr,t2} % photon % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=7,l.a=110,l=LQ}{vl} \fmfv{l.d=5,l.a=15,l=$\gamma$}{t2} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(170,35) \fmfleft{i1,i2} \fmfright{o1,o2} \fmftop{t1,t2} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{phantom,t=1.2}{v1,v} % support line \fmf{phantom,t=2.0}{v,v2} % support line \fmf{fermion}{v2,o1} % lepton line out \fmffreeze % internal quark line \fmf{fermion,l.d=6,l.s=left,label=$q$,t=1}{v1,vm} % quark line \fmf{plain,t=8}{vm,v2} % quark line % loop \fmf{boson,right=0.9,t=1}{v1,v2} % loop % photon \fmfshift{30 left}{t2} \fmf{boson,t=0}{v,t2} % photon % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=22,l.a=-85,l=LQ}{v1} \fmfv{l.d=5,l.a=15,l=$\gamma$}{t2} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(170,45) \fmfleft{i1,i2} \fmfright{o1,o2} \fmftop{t1,t2} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{phantom,t=0.85}{v1,v2} \fmf{fermion}{v2,o1} % lepton line out \fmffreeze % loop top \fmf{phantom,t=1}{vtl,i2} % support left \fmf{phantom,t=0.6}{vtl,vtr} % support middle \fmf{phantom,t=1}{vtr,o2} % support right \fmf{plain,left=0.26,t=1.6}{v1,vtl} % support loop \fmf{fermion,left=0.26,t=1.6,l.d=5,label=$q$}{vtl,vtr} % fermion loop \fmf{plain,left=0.26,t=1.6}{vtr,v2} % quark loop % loop bottom \fmf{boson,right=1,t=1,label=LQ}{v1,v2} % LQ loop % photon \fmfshift{30 left}{t2} \fmf{boson,t=0}{vtr,t2} % photon % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=5,l.a=20,l=$\gamma$}{t2} \end{fmfgraph*} \end{fmffile}
LVF decay of a heavy leptons (muon, tau) to a three leptons through a LQ mediator.
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(140,60) \fmfstraight \fmfleft{i1,i2,i3} \fmfright{o1,o2,o3} \fmftop{t1,t2} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{fermion,l.d=6,label=$q$,t=0.75}{v1,v2} % quark line \fmf{fermion}{v2,o1} % lepton line out \fmffreeze % loop \fmf{phantom,t=1.7}{vl,i2} % support left \fmf{phantom,t=2.4}{vl,vr} % support middle \fmf{phantom,t=1.7}{vr,o2} % support right \fmf{boson,left=0.25,t=0.7}{v1,vl,vr,v2} % loop \fmffreeze % photon \fmf{phantom,t=0.9}{t1,vg} % support \fmfshift{5 right}{o2} \fmfshift{5 right}{o3} \fmf{boson,t=1,l.d=4,label=$\gamma$}{vr,vg} % photon \fmf{fermion,t=1.8}{o3,vg,o2} % fermion % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=5,l.a=-10,l=$\ell'^-$}{o2} \fmfv{l.d=5,l.a=20,l=$\ell'^+$}{o3} \fmfv{l.d=8,l.a=70,l=LQ}{vl} %\fmfv{l.d=5,l.a=15,l=$\gamma$}{t2} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(150,50) \fmfstraight \fmfleft{i1,i2,i3} \fmfright{o1,o2,o3} % fermion lines \fmf{fermion}{i1,v1} % lepton line in \fmf{phantom,t=1.2}{v1,v} % support line \fmf{phantom,t=2.0}{v,v2} % support line \fmf{fermion}{v2,o1} % lepton line out \fmffreeze % internal quark line \fmf{fermion,l.d=6,l.s=left,label=$q$,t=1}{v1,vm} % quark line \fmf{plain,t=8}{vm,v2} % quark line % loop \fmf{boson,right=0.9,t=1}{v1,v2} % loop % photon -> 2 leptons \fmf{boson,t=1,l.d=3,l.s=left,label=$\gamma$}{v,vg} % photon \fmf{fermion,t=1.6}{o3,vg,o2} % lepton lines \fmf{phantom,t=1}{i3,vg} % support line % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o1} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o2} \fmfv{l.d=5,l.a=0,l=$\ell'^+$}{o3} \fmfv{l.d=22,l.a=-85,l=LQ}{v1} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \large \begin{fmfgraph*}(130,100) \fmfleft{i1,i2,i3} \fmfright{o1,o2,o3} \fmftop{t1,t2} \fmfbottom{b1,b2} % fermion lines \fmf{fermion}{i2,v1} % lepton line in \fmf{phantom,t=0.9}{v1,v2} \fmf{fermion}{v2,o2} % lepton line out \fmffreeze % loop top \fmf{phantom,t=1}{vtl,i3} % support left \fmf{phantom,t=0.6}{vtl,vtr} % support middle \fmf{phantom,t=1}{vtr,o3} % support right \fmf{phantom,left=0.26,t=1.5}{v1,vtl,vtr} % support loop \fmf{fermion,left=0.26,t=1.5,label=$q$}{vtr,v2} % quark loop \fmffreeze \fmf{boson,left=0.57,t=1,l.d=3,label=LQ}{v1,vtr} % LQ loop % loop bottom \fmf{phantom,t=1}{vbl,i1} % support left \fmf{phantom,t=0.6}{vbl,vbr} % support middle \fmf{phantom,t=1}{vbr,o1} % support right \fmf{phantom,right=0.26,t=1.5}{v1,vbl,vbr} % support loop \fmf{boson,right=0.26,t=1.5,l.d=3,label=LQ}{vbr,v2} % LQ loop \fmffreeze \fmf{fermion,right=0.57,t=1,label=$q$}{v1,vbr} % quark loop % fermion %\fmfshift{10 right}{o1} %\fmfshift{10 right}{o3} \fmf{fermion,t=0}{vbr,o1} % fermion \fmf{fermion,t=0}{o3,vtr} % fermion % labels \fmfv{l.d=5,l.a=180,l=$\ell^-$}{i2} \fmfv{l.d=5,l.a=0,l=$\ell'^-$}{o2} %\fmfv{l.d=7,l.a=110,l=LQ}{vtl} \fmfv{l.d=5,l.a=-15,l=$\ell'^-$}{o1} \fmfv{l.d=5,l.a=20,l=$\ell'^+$}{o3} \end{fmfgraph*} \end{fmffile}
The text colors in the diagrams below are defined with the following in the preamble:
\usepackage{xcolor} \definecolor{myblue}{rgb}{.1,.1,.7} \definecolor{myred}{rgb}{.4,.1,.1} \definecolor{mylightred}{rgb}{.9,.1,.1} \definecolor{mygreen}{rgb}{.1,.6,.1} \definecolor{myorange}{rgb}{.9,.7,.2}
Measuring the anomalous momentum (g-2) of tau leptons in electron-positron (e+e-) collisions:
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,t2,m,t1,op} % lead 1 \fmf{fermion}{ip,vp,op} \fmf{phantom,t=0.3}{ip,vp} % lead 2 \fmf{fermion}{iq,vq,oq} \fmf{phantom,t=0.3}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze % mediators \fmf{phantom,t=0.15}{vt1,im,vt2} \fmf{phantom,t=0.45}{vt1,vt2} \fmf{phantom,t=0.5}{vt1,t1} \fmf{phantom,t=0.5}{vt2,t2} \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,t=4,f=(.1,,.6,,.1)}{vt2,t2} \fmf{plain,t=1,label=\color{mygreen}$\tau$,l.s=left,f=(.1,,.6,,.1)}{vt2,vt1} \fmf{fermion,t=4,f=(.1,,.6,,.1)}{vt1,t1} % labels \fmfv{l=\strut e$^-$,l.a=160,l.d=4}{ip} \fmfv{l=\strut e$^-$,l.a=20,l.d=5}{op} \fmfv{l=\strut e$^+$,l.a=-160,l.d=4}{iq} \fmfv{l=\strut e$^+$,l.a=-20,l.d=5}{oq} \fmfv{l=\strut\color{mygreen}$\tau^+$,l.a=0,l.d=5}{t1} \fmfv{l=\strut\color{mygreen}$\tau^-$,l.a=0,l.d=5}{t2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4,f=(0.4,,0.1,,0.1)}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4,f=(0.4,,0.1,,0.1)}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4}{vt2} \end{fmfgraph*} \end{fmffile}
Ultra-peripheral lead-lead collisions (UPC) to measure the anomalous momentum (g-2) for tau leptons:
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,t2,m,t1,op} % lead 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.3}{ip,vp} % lead 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.3}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze % mediators \fmf{phantom,t=0.15}{vt1,im,vt2} \fmf{phantom,t=0.45}{vt1,vt2} \fmf{phantom,t=0.5}{vt1,t1} \fmf{phantom,t=0.5}{vt2,t2} \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmf{double,width=1.9}{ip,vp,op} \fmf{double,width=1.9}{iq,vq,oq} \fmffreeze % taus \fmf{fermion}{vt2,t2} \fmf{plain,label=$\tau$\!,l.s=left}{vt2,vt1} \fmf{fermion}{vt1,t1} % labels \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{l=\strut$\tau^+$,l.a=10,l.d=5}{t1} \fmfv{l=\strut$\tau^-$,l.a=-10,l.d=5}{t2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4}{vt1} \fmfv{decor.shape=circle,decor.filled=full,decor.size=4}{vt2} \end{fmfgraph*} \end{fmffile}
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,t2,m,t1,op} % lead 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.3}{ip,vp} % lead 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.3}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze \fmfi{double,width=1.9}{vpath (__ip,__vp)} \fmfi{double,width=1.9}{vpath (__vp,__op)} \fmfi{double,width=1.9}{vpath (__iq,__vq)} \fmfi{double,width=1.9}{vpath (__vq,__oq)} % mediators \fmf{phantom,t=0.15}{vt1,im,vt2} \fmf{phantom,t=0.45}{vt1,vt2} \fmf{phantom,t=0.5}{vt1,t1} \fmf{phantom,t=0.5}{vt2,t2} \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,f=(.1,,.6,,.1)}{vt2,t2} \fmf{plain,label=\color{mygreen}$\tau$\!,l.s=left,f=(.1,,.6,,.1)}{vt2,vt1} \fmf{fermion,f=(.1,,.6,,.1)}{vt1,t1} % labels \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{l=\strut\color{mygreen}$\tau^+$,l.a=10,l.d=5}{t1} \fmfv{l=\strut\color{mygreen}$\tau^-$,l.a=-10,l.d=5}{t2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=90,l.d=8}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=-90,l.d=8}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4}{vt2} \end{fmfgraph*} \end{fmffile}
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,t2,m,t1,op} % lead 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.3}{ip,vp} % lead 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.3}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze \fmfi{double,width=1.9}{vpath (__ip,__vp)} \fmfi{double,width=1.9}{vpath (__vp,__op)} \fmfi{double,width=1.9}{vpath (__iq,__vq)} \fmfi{double,width=1.9}{vpath (__vq,__oq)} % mediators \fmf{phantom,t=0.15}{vt1,im,vt2} \fmf{phantom,t=0.45}{vt1,vt2} \fmf{phantom,t=0.5}{vt1,t1} \fmf{phantom,t=0.5}{vt2,t2} \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,f=(.1,,.6,,.1)}{vt2,t2} \fmf{plain,label=\color{mygreen}$\tau$\!,l.s=left,f=(.1,,.6,,.1)}{vt2,vt1} \fmf{fermion,f=(.1,,.6,,.1)}{vt1,t1} % labels \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{l=\strut\color{mygreen}$\tau^+$,l.a=10,l.d=5}{t1} \fmfv{l=\strut\color{mygreen}$\tau^-$,l.a=-10,l.d=5}{t2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=90,l.d=8}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=-90,l.d=8}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\large$\color{myblue}\delta a_\tau$,l.d=3,l.a=-40}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\large$\color{myblue}\delta a_\tau$,l.d=3,l.a=40}{vt2} \end{fmfgraph*} \end{fmffile}
With a blob for new physics:
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,t2,m,t1,op} % proton 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.5}{ip,vp} % proton 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.5}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze \fmfi{double,width=1.9}{vpath (__ip,__vp)} \fmfi{double,width=1.9}{vpath (__vp,__op)} \fmfi{double,width=1.9}{vpath (__iq,__vq)} \fmfi{double,width=1.9}{vpath (__vq,__oq)} % mediators \fmf{phantom,t=0.15}{vt1,im,vt2} \fmf{phantom,t=0.45}{vt1,vt2} \fmf{phantom,t=0.7}{vt1,t1} \fmf{phantom,t=0.7}{vt2,t2} \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,f=(.1,,.6,,.1)}{vt2,t2} \fmf{plain,label=\color{mygreen}$\tau$,l.s=left,f=(.1,,.6,,.1)}{vt2,vt1} \fmf{fermion,f=(.1,,.6,,.1)}{vt1,t1} % labels \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{l=\strut\color{mygreen}$\tau^+$,l.a=10,l.d=5}{t1} \fmfv{l=\strut\color{mygreen}$\tau^-$,l.a=-10,l.d=5}{t2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=90,l.d=8}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=-90,l.d=8}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\;\large$\color{myblue}\delta a_\tau$,l.d=5,l.a=-25}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\;\large$\color{myblue}\delta a_\tau$,l.d=5,l.a=25}{vt2} \fmfblob{18}{vt2,vt1} \end{fmfgraph*} \end{fmffile}
UPC with neutron emission from electromagnetic dissociation (EMD):
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,d,t2,m,t1,n,op} \fmfshift{7 right}{op} \fmfshift{7 right}{oq} \fmfshift{5 up}{op} \fmfshift{4 up}{n} \fmfshift{5 down}{oq} % lead 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.4}{ip,vp} % lead 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.4}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze \fmf{phantom,label=\:Pb$^*$,l.s=left}{vp,vn} % excited Pb \fmf{phantom,t=0.9}{vn,op} % relaxed Pb \fmffreeze \fmf{phantom,t=0.1}{vn,n} % neutron \fmffreeze \fmfi{double,width=1.9}{vpath (__ip,__vp)} \fmfi{double,width=1.9}{vpath (__vp,__op)} \fmfi{double,width=1.3}{vpath (__vn,__n)} % neutron \fmfi{double,width=1.9}{vpath (__iq,__vq)} \fmfi{double,width=1.9}{vpath (__vq,__oq)} % mediators \fmf{phantom,t=0.15}{vt1,im,vt2} \fmf{phantom,t=0.65}{vt1,vt2} % t-channel \fmf{phantom,t=0.6}{vt1,t1} \fmf{phantom,t=0.6}{vt2,t2} \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,f=(.1,,.6,,.1)}{vt2,t2} \fmf{plain,label=\color{mygreen}$\tau$,l.d=4,l.s=left,f=(.1,,.6,,.1)}{vt2,vt1} \fmf{fermion,f=(.1,,.6,,.1)}{vt1,t1} % labels \fmfv{l=n$^0$,l.a=10,l.d=6}{n} % neutron \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{l=\strut\color{mygreen}$\tau^+$,l.a=10,l.d=5}{t1} \fmfv{l=\strut\color{mygreen}$\tau^-$,l.a=-10,l.d=5}{t2} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$\;\;,l.a=110,l.d=9}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=-90,l.d=8}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4}{vt2} \end{fmfgraph*} \end{fmffile}
UPC with a pair of tau leptons decaying into a muon and hadrons (“mutau” decay channel):
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,n3,p3,p2,p1,n2,n1,m1,op} \fmfshift{8 right}{m1} \fmfshift{8 right}{n1} \fmfshift{8 right}{n2} \fmfshift{8 right}{p1} \fmfshift{8 right}{p2} \fmfshift{8 right}{p3} \fmfshift{8 right}{n3} % proton 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.5}{ip,vp} % proton 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.5}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze \fmfi{double,width=1.9}{vpath (__ip,__vp)} \fmfi{double,width=1.9}{vpath (__vp,__op)} \fmfi{double,width=1.9}{vpath (__iq,__vq)} \fmfi{double,width=1.9}{vpath (__vq,__oq)} % mediators \fmf{phantom,t=0.05}{vt1,im,vt2} % pull left \fmf{phantom,t=0.45}{vt1,vt2} % pull together \fmf{phantom,t=0.6}{vt1,t1} \fmf{phantom,t=0.6}{vt2,t2} \fmf{phantom,t=0.5}{t1,t2} % pull together \fmf{phantom,t=0.8}{t2,oq} % pull right \fmf{phantom,t=0.8}{t1,op} % pull right \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,label=$\tau$,l.s=right}{vt2,t2} \fmf{plain,label=$\tau$\!,l.s=left}{vt2,vt1} \fmf{fermion,label=$\tau$,l.s=left}{vt1,t1} % tau decay 1 \fmf{plain,t=1}{p1,t2} \fmf{plain,t=1}{t2,p2} \fmf{plain,t=1}{p3,t2} \fmf{plain,t=1}{n3,t2} \fmfv{l=$\pi^\mp$,l.a=0,l.d=5}{p1} \fmfv{l=$\pi^\pm$,l.a=0,l.d=5}{p2} \fmfv{l=$\pi^\mp$,l.a=0,l.d=5}{p3} \fmfv{l=$\overline\nu_\tau$,l.a=-20,l.d=5}{n3} % tau decay 2 \fmf{plain,t=1}{t1,n1} \fmf{plain,t=1}{t1,n2} \fmf{plain,t=1}{t1,m1} \fmfv{l=$\mu^\pm$,l.a=20,l.d=5}{m1} \fmfv{l=$\nu_\tau$,l.a=0,l.d=5}{n1} \fmfv{l=$\nu_\mu$,l.a=0,l.d=5}{n2} % labels \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=90,l.d=8}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=-90,l.d=8}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\large$\color{myblue}\delta a_\tau$,l.d=3,l.a=-40}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\large$\color{myblue}\delta a_\tau$,l.d=3,l.a=40}{vt2} \end{fmfgraph*} \end{fmffile}
\Large \begin{fmffile}{feyngraph} \begin{fmfgraph*}(150,100) \fmfleft{iq,im,ip} \fmfright{oq,n3,p3,p2,p1,n2,n1,m1,op} \fmfshift{8 right}{m1} \fmfshift{8 right}{n1} \fmfshift{8 right}{n2} \fmfshift{8 right}{p1} \fmfshift{8 right}{p2} \fmfshift{8 right}{p3} \fmfshift{8 right}{n3} % proton 1 \fmf{phantom}{ip,vp,op} \fmf{phantom,t=0.5}{ip,vp} % proton 2 \fmf{phantom}{iq,vq,oq} \fmf{phantom,t=0.5}{iq,vq} \fmf{phantom,t=0.2}{vp,vq} \fmffreeze \fmfi{double,width=1.9}{vpath (__ip,__vp)} \fmfi{double,width=1.9}{vpath (__vp,__op)} \fmfi{double,width=1.9}{vpath (__iq,__vq)} \fmfi{double,width=1.9}{vpath (__vq,__oq)} % mediators \fmf{phantom,t=0.05}{vt1,im,vt2} % pull left \fmf{phantom,t=0.45}{vt1,vt2} % pull together \fmf{phantom,t=0.6}{vt1,t1} \fmf{phantom,t=0.6}{vt2,t2} \fmf{phantom,t=0.5}{t1,t2} % pull together \fmf{phantom,t=0.8}{t2,oq} % pull right \fmf{phantom,t=0.8}{t1,op} % pull right \fmf{boson,t=0.7,label=$\gamma$,l.d=4,l.s=right}{vp,vt1} \fmf{boson,t=0.7,label=$\gamma$,l.d=3,l.s=left}{vq,vt2} \fmffreeze % taus \fmf{fermion,label=\color{mygreen}$\tau$,l.s=right,f=(.1,,.6,,.1)}{vt2,t2} \fmf{plain,label=\color{mygreen}$\tau$\!,l.s=left,f=(.1,,.6,,.1)}{vt2,vt1} \fmf{fermion,label=\color{mygreen}$\tau$,l.s=left,f=(.1,,.6,,.1)}{vt1,t1} % tau decay 1 \fmf{plain,t=1,f=(.9,,.7,,.2)}{p1,t2} \fmf{plain,t=1,f=(.9,,.7,,.2)}{t2,p2} \fmf{plain,t=1,f=(.9,,.7,,.2)}{p3,t2} \fmf{plain,t=1,f=(.1,,.6,,.1)}{n3,t2} \fmfv{l=\color{myorange}$\pi^\mp$,l.a=0,l.d=5}{p1} \fmfv{l=\color{myorange}$\pi^\pm$,l.a=0,l.d=5}{p2} \fmfv{l=\color{myorange}$\pi^\mp$,l.a=0,l.d=5}{p3} \fmfv{l=\color{mygreen}$\overline\nu_\tau$,l.a=-20,l.d=5}{n3} % tau decay 2 \fmf{plain,t=1,f=(.1,,.6,,.1)}{t1,n1} \fmf{plain,t=1,f=(.1,,.6,,.1)}{t1,n2} \fmf{plain,t=1,f=(.9,,.1,,.1)}{t1,m1} \fmfv{l=\color{mylightred}$\mu^\pm$,l.a=20,l.d=5}{m1} \fmfv{l=\color{mygreen}$\nu_\tau$,l.a=0,l.d=5}{n1} \fmfv{l=\color{mygreen}$\nu_\mu$,l.a=0,l.d=5}{n2} % labels \fmfv{l=\strut Pb,l.a=160,l.d=6}{ip} \fmfv{l=\strut Pb,l.a=20,l.d=5}{op} \fmfv{l=\strut Pb,l.a=-160,l.d=6}{iq} \fmfv{l=\strut Pb,l.a=-20,l.d=5}{oq} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=90,l.d=8}{vp} \fmfv{decor.shape=circle,decor.filled=full,decor.size=6,f=(0.4,,0.1,,0.1), l=$\color{myred}Ze$,l.a=-90,l.d=8}{vq} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\large$\color{myblue}\delta a_\tau$,l.d=3,l.a=-40}{vt1} \fmfv{decor.shape=circle,f=(0.1,,0.1,,0.7),decor.filled=full,decor.size=4, l=\large$\color{myblue}\delta a_\tau$,l.d=3,l.a=40}{vt2} \end{fmfgraph*} \end{fmffile}
For fun, here are two alternative code snippets for the Penguin diagram from Yamanaka examples and Ohl's webpages.
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(120,120) \fmfstraight \fmfleft{g1,g2,s,dsleft,gl} \fmflabel{$\text{s}$}{s} \fmflabel{$\overline{\text{d}}$}{dsleft} \fmfright{n1,n2,d,dsright,gr} \fmflabel{$\bar \nu$}{n1} \fmflabel{$\nu$}{n2} \fmflabel{$\text{d}$}{d} \fmflabel{$\overline{\text{d}}$}{dsright} \fmf{fermion,tension=1}{dsright,dsleft} \fmf{fermion,tension=1}{s,v1} \fmf{fermion,tension=1}{v3,d} \fmf{fermion}{v1,v2} \fmf{fermion,label=$\text{t}$,label.side=right}{v2,v3} \fmf{photon,label=$\text{W}^-$,left=0.5,tension=0.2}{v1,v3} \fmf{photon,label=$\text{Z}^0$,right=0.5,tension=0.5}{v2,v4} \fmf{fermion}{n1,v4,n2} \fmf{phantom}{g1,v4,g2} \fmfv{label=$V_\text{td}$,label.angle=-35,decor.shape=circle, decor.filled=full,decor.size=2thick}{v3} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,120) \fmfstraight \fmfleft{x,g1,g2,x,s,dsleft,x} \fmfright{x,n1,n2,x,d,dsright,x} \fmfbottom{b} \fmflabel{$\text{b}$}{s} \fmflabel{$\text{s}$}{d} \fmf{fermion,tension=1}{dsleft,dsright} \fmf{fermion,tension=1}{s,v1} \fmf{fermion,tension=1}{v3,d} \fmf{photon,label=$\text{W}^-$,label.side=left,tension=1}{v1,v3} \fmffreeze \fmf{fermion,label=$\text{t}$,right=0.4,tension=0.2}{v1,v2} \fmf{fermion,right=0.4,label.side=right,tension=0.2}{v2,v3} \fmf{phantom,tension=0.20}{v2,b} \fmffreeze \fmf{photon,label=$\gamma/\text{Z}^0$,label.side=right,tension=0.5}{v2,v4} \fmf{fermion,tension=2}{n1,v4,n2} \fmf{phantom}{g1,v4,g2} \fmfv{label=$V_\text{ts}^{*}$,label.angle=45,label.dist=3, %decor.shape=circle, decor.filled=full,decor.size=2thick }{v3} \fmfv{label=$V_\text{tb}$,label.angle=120,label.dist=3, %decor.shape=circle, decor.filled=full,decor.size=2thick }{v1} \fmfv{label=$\ell^+$,label.angle=0}{n1} \fmfv{label=$\ell^-$,label.angle=0}{n2} \fmfv{label=$\text{$q$}$,label.angle=180}{dsleft} \fmfv{label=$\text{$q$}$,label.angle=0}{dsright} \end{fmfgraph*} \end{fmffile}
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(140,140) \fmftop{b,s} \fmfbottom{ep,em} \fmf{fermion,lab=b,lab.sid=left}{b,Vtb} \fmf{fermion,lab=s,lab.sid=left}{Vts,s} \fmf{fermion,tension=.5,lab=t,lab.sid=right}{Vtb,g,Vts} \fmf{dbl_wiggly,tension=.8,lab=W,lab.sid=left}{Vtb,Vts} \fmf{photon}{g,g'} \fmf{fermion}{ep,g',em} \fmfdot{Vtb,Vts,g,g'} \end{fmfgraph*} \end{fmffile}
As drawn by John Ellis and Melissa Franklin (explanation of the code):
\begin{fmffile}{feyngraph} \begin{fmfgraph*}(100,100) \fmfipair{Vtb,Vts,b,s,ep,em,p,p'} \fmfiequ{.5[Vtb,Vts]}{.5[nw,ne]} \fmfiequ{Vts}{Vtb+(.3w,0)} \fmfiequ{b}{.7[sw,nw]} \fmfiequ{s}{.7[se,ne]} \fmfiequ{xpart(p')}{xpart(.5[ep,em])} \fmfiequ{ypart(p')}{.2h} \fmfiequ{p}{p'+(0,.2h)} \fmfiequ{.5[ep,em]}{.5[sw,se]} \fmfiequ{em}{ep+(.7w,0)} \fmfi{dbl_wiggly,lab=W,lab.sid=right}{Vtb--Vts} \fmfi{fermion,lab=b,lab.sid=left}{b--Vtb} \fmfi{fermion,lab=s,lab.sid=left}{Vts--s} \fmfi{fermion,lab=t}{Vtb{b-Vtb} .. tension 2 .. {right}p} \fmfi{fermion,lab=t}{p{right} .. tension 2 .. {Vts-s}Vts} \fmfi{photon}{p--p'} \fmfi{fermion}{ep--p'} \fmfi{fermion}{p'--em} \fmfiv{d.sh=circle,d.siz=2thick}{Vtb} \fmfiv{d.sh=circle,d.siz=2thick}{Vts} \fmfiv{d.sh=circle,d.siz=2thick}{p} \fmfiv{d.sh=circle,d.siz=2thick}{p'} \end{fmfgraph*} \end{fmffile}