
-- Title : ODILE Top Controller

-- Project :

-- File : odile_controller.vhd

-- Author : Ryan Thomas <ryant@uchicago.edu>

-- Company : University of Chicago

-- Created : 2020-03-12

-- Last update: 2021-05-27

-- Platform :

-- Standard : VHDL'93/02

-- Description: Top Controller for the ODILE board. Produces several

different

-- reset signals and handles start/stop of sequencer

--!\file odile_controller.vhd

library ieee;

use ieee.std_logic_1164.all;

--!Helper package for blocks that interface with the commands from the

DAQ.

package ODILE_command_list is

 subtype command is std_logic_vector(23 downto 0);

 -- List of supported commands. Note if you add a command, add it to the

 -- is_valid_command function below so the response generator knows it

is

 -- valid.

 -- ! SIP Allows to set the IP and MAC address from the board ID

 constant CMD_SET_IP : command := X"53_49_50";

 -- ! PNG, toggle on or off PONG messages in data flow

 constant CMD_TOGGLE_PONG : command := X"50_4E_47";

 --! GID get FPGA chip unique ID

 constant CMD_GET_CHIP_ID : command := X"47_49_44";

 --!MST, define your ODILE board as the master board.

 constant CMD_SET_MST : command := X"4D_53_54";

 --!SLV, define your ODILE board as a slave board.

 constant CMD_SET_SLV : command := X"53_4C_56";

 --!EXS, enable start_sequencer signal coming from outside (RJ45).

 constant CMD_ENABLE_EXT_START_SEQ : command := X"45_58_53";

 --!DXS, enable start_sequencer signal coming from outside (RJ45).

 constant CMD_DISABLE_EXT_START_SEQ : command := X"44_58_53";

 --!SEX, Start EXposure. Starts clocking to take an image

 constant CMD_START_SEQ : command := X"53_45_58";

 --!AEX, Abort EXposure. Stops clocking to take an image.

 constant CMD_STOP_SEQ : command := X"41_45_58";

 --!STS, STep Sequencer. Steps the sequencer

 constant CMD_STEP_SEQ : command := X"53_54_53";

 --!GCT, Get Compile Time. Tells the ODILE to report the compile time of

the firmware, if it was compiled with that option.

 constant CMD_GET_TS : command := X"47_43_54";

 --!GCL, Get Command List. Returns the list of currently supported

commands.

 constant CMD_GET_CMD_LIST : command := X"47_43_4C";

 --!GUT, Get UpTime. Gets seconds board has been up since last reset.

Note: this is derived from counting clock cycles, so it will not be

accurate.

 constant CMD_GET_UPTIME : command := X"47_55_54";

 --!INV, INValid. Indicates that the previous command was not

recognized.

 constant CMD_INVALID : command := X"49_4E_56";

 --!DON, DONe. Sent by the ODILE to indicate that the previous command

has finished. Not supported for all commands.

 constant CMD_DONE : command := X"44_4F_4E";

 --!ERR, ERRor. Sent by the ODILE to indicate an error with the previous

command.

 constant CMD_ERROR : command := X"45_52_52";

 --!RDP, ReaD Program. Tells the ODILE to read back the sequencer

program memory

 constant CMD_READ_PROG : command := X"52_44_50";

 --!RDT, ReaD Timing. Reads back the sequencer timing memory

 constant CMD_READ_TIME : command := X"52_44_54";

 --!RDO, ReaD Output. Reads the sequencer output memory

 constant CMD_READ_OUT : command := X"52_44_4F";

 --!GEC, Get Error Code. Tells the ODILE to report the current error

code (0x0 if no error)

 constant CMD_GET_ERROR : command := X"47_45_43";

 --!CER, Clear ERror. Clears the current error code.

 constant CMD_CLEAR_ERROR : command := X"43_45_43";

 --!RSC, ReSet Cabac. Triggers the "reset_cabac" signal.

 constant CMD_RESET_CABAC : command := X"52_53_43";

 --!RDC, Read Cabac. Reads the current value of the

"Reg32b_cabacspi_ReadOnly" register.

 constant CMD_READ_CABAC : command := X"52_44_43";

 --!RSD, ReSet DAC. Triggers the "reset_dac" signal.

 constant CMD_RESET_DAC : command := X"52_53_44";

 --!RDD, Read DAC. Reads the current value of the

"Reg32b_dacspi_ReadOnly" register.

 constant CMD_READ_DAC : command := X"52_44_44";

 --!RSV, ReSet DIP. Triggers the "reset_dip" signal.

 constant CMD_RESET_DIP : command := X"52_53_56";

 --!RDV, Read DIP. Reads the current value of the

"Reg32b_dipspi_ReadOnly" register.

 constant CMD_READ_DIP : command := X"52_44_56";

 --!CBS, Clear MAX14802. Triggers the "reset_MAX14802" signal.

 constant CMD_RESET_MAX14802 : command := X"43_42_53";

 --!RDM, Read MAX14802. Reads the current value of the

"Reg32b_MAX14802serial_ReadOnly" register.

 constant CMD_READ_MAX14802 : command := X"52_44_4D";

 -- Enables

 -- B3018_16 : VSUB Generator Block;

 -- B3018_17_1, B3018_17_2, B3018_17_3, B3018_17_4 : Bias Generator

Block (There are four identical channels);

 -- B3018_18_1, B3018_18_2: Bias Generator with Offset Block (There are

two identical channels);

 --!EHV, Enable the 100volts VSUB supply (High voltage).

 constant CMD_ENABLE_HV : command := X"45_48_56";

 --!VR0, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR0 : command := X"56_52_30";

 --!VR1, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR1 : command := X"56_52_31";

 --!VR2, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR2 : command := X"56_52_32";

 --!VR3, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR3 : command := X"56_52_33";

 --!VR4, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR4 : command := X"56_52_34";

 --!VR5, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR5 : command := X"56_52_35";

 --!VR6, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_VR6 : command := X"56_52_36";

 --!DHV, Disable the 100volts VSUB supply (High voltage).

 constant CMD_DISABLE_HV : command := X"44_48_56";

 --!0RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR0 : command := X"30_52_56";

 --!1RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR1 : command := X"31_52_56";

 --!2RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR2 : command := X"32_52_56";

 --!3RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR3 : command := X"33_52_56";

 --!4RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR4 : command := X"34_52_56";

 --!5RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR5 : command := X"35_52_56";

 --!6RV, DISABLE the "TPS7A330" signal.

 constant CMD_DISABLE_VR6 : command := X"36_52_56";

 --!CON, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_CLEAR : command := X"43_4F_4E";

 --!LON, Enable the "TPS7A330" signal.

 constant CMD_ENABLE_LATCH : command := X"4C_4F_4E";

 --!EPS, Enable Front-end positive supply.

 constant CMD_ENABLE_POS : command := X"45_50_53";

 --!ENS, Enable Front-end negative supply.

 constant CMD_ENABLE_NEG : command := X"45_4E_53";

 --!DPS, Disable Front-end positive supply.

 constant CMD_DISABLE_POS : command := X"44_50_53";

 --!DNS, Disable Front-end negative supply.

 constant CMD_DISABLE_NEG : command := X"44_4E_53";

 --!RCR, Read CRoc. Initiates a request to the croc interface to read

the CROC register. To read the result, use the GCR command.

 constant CMD_READ_CROC : command := X"52_43_52";

 --!GCR, Get CRoc. Reads the 96-bit croc register to the PC.

 constant CMD_GET_CROC : command := X"47_43_52";

 --!RDB, ReaD configuration Blocks. Reads the all the configuration

register memories.

 constant CMD_READ_CONFIG : command := X"52_44_42";

 --!ERS, ERase Sequencer. Erases all the sequencer memories (sets them

to 0x0).

 constant CMD_ERASE_SEQ : command := X"45_52_53";

 --!RDF, ReaD indirect Function. Reads the indirect function sequencer

memory.

 constant CMD_READ_INDF : command := X"52_44_46";

 --!RDR, ReaD indirect Reps. Reads the indirect function repitition

sequencer memory.

 constant CMD_READ_INDR : command := X"52_44_52";

 --!RDA, ReaD indirect Address. Reads the indirect function address

sequencer memory.

 constant CMD_READ_INDSA : command := X"52_44_41";

 --!RDS, Read indirect Sub reps. Reads the indirect subfunction

repitition sequencer memory.

 constant CMD_READ_INDSR : command := X"52_44_53";

 -- EPCQIO commands

 --!EWR, EPCQ WRite. Writes the current EPCQ FIFO buffer contents to the

EPCQ flash, starting at the currently set address. Requires an 8-bit

prefix to specify the number of 32-bit words to write.

 constant CMD_EPCQ_WRITE : command := X"45_57_52";

 --!ERD, EPCQ ReaD. Reads the EPCQ flash memory, starting at the

currently set address.

 constant CMD_EPCQ_READ : command := X"45_52_44";

 --!ERB, EPCQ Reset Buffers. Clears the EPCQIO read/write buffers

 constant CMD_EPCQ_CLEAR : command := X"45_52_42";

 --!ESA, EPCQ Set Address. Sets the start address for read/write

commands. Two-word command, the address should be sent in the second

word.

 constant CMD_EPCQ_SETA : command := X"45_53_41";

 --!E4B, EPCQ enable 4 Byte. Debug command to enable 4 byte addressing

in the Altera EPCQIO block.

 constant CMD_EPCQ_EN4B : command := X"45_34_42";

 --!ESE, EPCQ Sector Erase. Erase the sector containing the currently

set address.

 constant CMD_EPCQ_ERASE_SEC : command := X"45_53_45";

 -- Remote update commands

 --!RUA, Remote Update Address. Sets the start address to load firmware

from. Two word command with the second word being the start address.

 constant CMD_RU_ADDRESS : command := X"52_55_41";

 --!\brief RUR, Remote Update Reconfig. Starts the process of loading

the firmware from the address sset with RUA.

 --!Note that if this address does not

 --!contain a valid firmware image, the FPGA will automatically try to

load the factory firmware from 0x0, if that also does not contain a valid

 --!firmware the FPGA will need to be manually reflashed.

 constant CMD_RU_RECONFIG : command := X"52_55_52";

 --!RUL, Remote Update Reload. Debug command that rereads the Altera

remote update block parameters.

 constant CMD_RU_REREAD : command := X"52_55_4C";

 -- Configuration loading commands

 --!\brief LDC, LoaD Config. Loads configuration register settings from

one of the ten pages stored on the flash memory. The page should be

specified in the

 --!8 bit prefix. Valid pages range from 0x0 to 0xA.

 constant CMD_CONF_LOAD : command := X"4C_44_43";

 -- Monitoring/misc commands

 --!SCM, Start CCD Monitoring. Activates the start_monitoring signal.

 constant CMD_START_MONITORING : command := X"53_43_4d";

 --!GCM, Get CCD Monitoring. Reads the 18x32 bit register of the

top_monitoring results.

 constant CMD_GET_MONITORING : command := X"47_43_4d";

 --!SSW, Set SWitches. Sets the hardware switches. The 8 switch values

should be specified in binary in the 8-bit prefix.

 constant CMD_SET_SWITCHES : command := X"53_53_57";

 --!GSW, Get SWitches. Gets the hardware switches.

 constant CMD_GET_SWITCHES : command := X"47_53_57";

 --!Returns true if command is valid

 function is_valid_command(cmd : command) return boolean;

 type command_array is array(natural range <>) of command;

 --!List of valid commands. Update this if you add a command above

 constant VALID_COMMANDS : command_array := (CMD_SET_MST,

CMD_SET_SLV,CMD_SET_IP, CMD_TOGGLE_PONG, CMD_GET_CHIP_ID,

 CMD_ENABLE_EXT_START_SEQ,

CMD_DISABLE_EXT_START_SEQ, CMD_START_SEQ, CMD_STOP_SEQ, CMD_STEP_SEQ,

CMD_GET_TS, CMD_GET_CMD_LIST,

 CMD_READ_PROG,

CMD_READ_TIME, CMD_READ_OUT, CMD_GET_ERROR, CMD_CLEAR_ERROR,

 CMD_RESET_DAC,

CMD_READ_DAC, CMD_RESET_DIP, CMD_READ_DIP, CMD_RESET_MAX14802,

CMD_READ_MAX14802,

CMD_ENABLE_HV, CMD_ENABLE_VR0, CMD_ENABLE_VR1, CMD_ENABLE_VR2,

CMD_ENABLE_VR3, CMD_ENABLE_VR4, CMD_ENABLE_VR5, CMD_ENABLE_VR6,

CMD_DISABLE_HV, CMD_DISABLE_VR0, CMD_DISABLE_VR1, CMD_DISABLE_VR2,

CMD_DISABLE_VR3, CMD_DISABLE_VR4, CMD_DISABLE_VR5, CMD_DISABLE_VR6,

CMD_ENABLE_CLEAR, CMD_ENABLE_LATCH,

 CMD_ENABLE_POS,

CMD_ENABLE_NEG, CMD_DISABLE_POS, CMD_DISABLE_NEG,

 CMD_READ_CONFIG, CMD_ERASE_SEQ,

CMD_READ_INDF,

 CMD_READ_INDR,

CMD_READ_INDSA, CMD_READ_INDSR, CMD_EPCQ_WRITE,

 CMD_EPCQ_READ,

CMD_EPCQ_CLEAR, CMD_EPCQ_SETA, CMD_EPCQ_EN4B,

 CMD_EPCQ_ERASE_SEC,

CMD_RU_ADDRESS, CMD_RU_RECONFIG, CMD_RU_REREAD,

 CMD_CONF_LOAD,

CMD_START_MONITORING, CMD_GET_MONITORING,

 CMD_SET_SWITCHES,

CMD_GET_SWITCHES, CMD_GET_UPTIME);

end package ODILE_command_list;

package body ODILE_command_list is

 --!Scans over list of valid commands and returns true if cmd is in that

list.

 function is_valid_command (cmd : command) return boolean is

 begin

 for I in VALID_COMMANDS'range loop

 if cmd = VALID_COMMANDS(I) then

 return true;

 end if;

 end loop;

 return false;

 end function is_valid_command;

end package body ODILE_command_list;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.math_real.all;

use work.eth_common.all;

use work.ODILE_command_list.all;

--!\brief Controller that parses data from the Ethernet interface and

--!interprets any commands from the DAQ.

entity odile_controller is

 port (

 clock : in std_logic;

 reset : in std_logic;

 --!\name Inputs from ethernet

 --!\{

 data_in : in std_logic_vector(31 downto 0);

 data_valid : in std_logic;

 data_port : in std_logic_vector(15 downto 0);

 data_addr : in std_logic_vector(79 downto 0);

 source_iface : in std_logic_vector(3 downto 0);

 --!\}

 --!\name Outputs to PLLs (set board as master or slave)

 --!\{

 set_master : out std_logic;

 set_slave : out std_logic;

 enable_ext_start_seq : out std_logic;

 disable_ext_start_seq : out std_logic;

 --!\}

 --!\name Outputs to sequencer

 --!\{

 start_sequence : out std_logic;

 step_sequence : out std_logic;

 stop_sequence : out std_logic;

 --!\}

 --!\name Outputs to ethernet_ccdcontrol_interface

 --!\{

 read_triggers : out std_logic_vector(15 downto 0);

 clear_error : out std_logic;

 reset_cabac : out std_logic;

 reset_dac : out std_logic;

 reset_dip : out std_logic;

 reset_MAX14802 : out std_logic;

 erase_sequencer : out std_logic;

 enable_100VP : out std_logic;

 enable_VR0 : out std_logic;

 enable_VR1 : out std_logic;

 enable_VR2 : out std_logic;

 enable_VR3 : out std_logic;

 enable_VR4 : out std_logic;

 enable_VR5 : out std_logic;

 enable_VR6 : out std_logic;

 enable_CLEAR : out std_logic;

 enable_LATCH : out std_logic;

 --!\}

 --!\name Outputs to Front-end supply regulators

 --!\{

 enable_pos : out std_logic;

 enable_neg : out std_logic;

 --!\}

 --!\name Outputs to EPCQIO/remote update block

 --!\{

 epcqio_read_data : out std_logic;

 epcqio_write_data : out std_logic;

 epcqio_enable_4byte : out std_logic;

 epcqio_erase_sector : out std_logic;

 epcqio_clear_buffers : out std_logic;

 epcqio_address : out std_logic_vector(31 downto 0);

 epcqio_num_words : out std_logic_vector(6 downto 0);

 --!\}

 --!\name Outputs to remote update block

 --!\{

 ru_do_reconfig : out std_logic;

 ru_application_address : out std_logic_vector(23 downto 0);

 ru_reread_params : out std_logic;

 --!\}

 --!\name Miscellaneous outputs

 --!\{

 --!Signals the top_monitoring block to sample it's ADCs

 start_monitoring : out std_logic;

 --!Tells the Ethernet interface to read the 18x32 bit monitoring

register

 read_monitoring : out std_logic;

 --!Signals the CROC controller to read the current CROC status.

 read_croc : out std_logic;

 --!Whether to send an acknowledgment of the command to the DAQ

 send_cmd_ack : out std_logic;

 --!Command to acknowledge

 cmd_to_ack : out std_logic_vector(31 downto 0);

 --!Read configuration from flash

 cm_load_config : out std_logic;

 --!Config page to load (from 0-9)

 cm_config_page : out std_logic_vector(3 downto 0);

 --!Read our current configuration registers

 read_config : out std_logic;

 --!Interface that generated the command

 reply_iface : out std_logic_vector(3 downto 0);

 reply_addr : out std_logic_vector(79 downto 0);

 --!Hardware switches

 switches : out std_logic_vector(7 downto 0);

 enable_pong : out std_logic;

 board_daq_id : out std_logic_vector(7 downto 0);

 chip_id_lsb : in std_logic_vector(31 downto 0)

);

--!\}

end entity odile_controller;

architecture vhdl_rtl of odile_controller is

 signal data_in_reg : std_logic_vector(31

downto 0) := (others => '0');

 signal data_port_reg : std_logic_vector(15

downto 0) := (others => '0');

 signal data_valid_reg : std_logic

:= '0';

 signal data_addr_reg : std_logic_vector(79

downto 0) := (others => '0');

 signal source_iface_reg : std_logic_vector(3

downto 0) := (others => '0');

 signal read_program, read_timing, read_output : std_logic

:= '0';

 signal read_cabac_reg : std_logic

:= '0';

 signal read_dac_reg : std_logic

:= '0';

 signal read_dip_reg : std_logic

:= '0';

 signal read_MAX14802_reg : std_logic

:= '0';

 signal read_ind_func, read_ind_rep : std_logic

:= '0';

 signal read_ind_sub_add, read_ind_sub_rep : std_logic

:= '0';

 signal epcqio_address_reg : std_logic_vector(31

downto 0) := (others => '0');

 signal second_word : boolean

:= false;

 signal epcqio_numwords_reg : std_logic_vector(6

downto 0) := (others => '0');

 signal ru_reconfig_reg : std_logic

:= '0';

 signal ru_address_reg : std_logic_vector(23

downto 0) := (others => '1');

 signal ru_reread_params_reg : std_logic

:= '0';

 signal cm_load_config_reg : std_logic

:= '0';

 signal cm_config_page_reg : std_logic_vector(3

downto 0) := (others => '0');

 signal start_monitoring_reg : std_logic

:= '0';

 signal read_monitoring_reg : std_logic

:= '0';

 signal switches_reg : std_logic_vector(7

downto 0) := (others => '0');

 signal read_croc_reg : std_logic

:= '0';

 signal get_croc_reg : std_logic

:= '0';

begin

 --Uses a single read_triggers bus to our ccdcontrol interface because

we have many

 --signals and I don't want to code every single one by hand.

 read_triggers(0) <= read_program;

 read_triggers(1) <= read_timing;

 read_triggers(2) <= read_output;

 read_triggers(3) <= read_ind_func;

 read_triggers(4) <= read_ind_rep;

 read_triggers(5) <= read_ind_sub_add;

 read_triggers(6) <= read_ind_sub_rep;

 read_triggers(7) <= read_cabac_reg;

 read_triggers(8) <= get_croc_reg;

 read_triggers(9) <= read_dac_reg;

 read_triggers(10) <= read_dip_reg;

 read_triggers(11) <= read_MAX14802_reg;

 read_triggers(15 downto 12) <= (others => '0');

 epcqio_address <= epcqio_address_reg;

 epcqio_num_words <= epcqio_numwords_reg;

 ru_do_reconfig <= ru_reconfig_reg;

 ru_application_address <= ru_address_reg;

 ru_reread_params <= ru_reread_params_reg;

 cm_load_config <= cm_load_config_reg;

 cm_config_page <= cm_config_page_reg;

 start_monitoring <= start_monitoring_reg;

 read_monitoring <= read_monitoring_reg;

 switches <= switches_reg;

 read_croc <= read_croc_reg;

 --!Interprets commands from our DAQ into triggers for other components.

 command_parser : process (clock, reset)

 variable prev_cmd : command := (others => '0');

 begin

 if reset = '1' then

 --Default states

 board_daq_id <= X"05";

 enable_pong <= '1';

 set_master <= '0';

 set_slave <= '0';

 enable_ext_start_seq <= '0';

 disable_ext_start_seq<= '0';

 start_sequence <= '0';

 stop_sequence <= '0';

 step_sequence <= '0';

 read_program <= '0';

 read_timing <= '0';

 read_output <= '0';

 read_ind_rep <= '0';

 read_ind_func <= '0';

 read_ind_sub_add <= '0';

 read_ind_sub_rep <= '0';

 reset_cabac <= '0';

 reset_dac <= '0';

 reset_dip <= '0';

 reset_MAX14802 <= '0';

 enable_100VP <= '0';

 enable_VR0 <= '0';

 enable_VR1 <= '0';

 enable_VR2 <= '0';

 enable_VR3 <= '0';

 enable_VR4 <= '0';

 enable_VR5 <= '0';

 enable_VR6 <= '0';

 enable_CLEAR <= '0';

 enable_LATCH <= '1';

 enable_pos <= '0';

 enable_neg <= '0';

 data_in_reg <= (others => '0');

 data_port_reg <= (others => '0');

 data_valid_reg <= '0';

 clear_error <= '0';

 erase_sequencer <= '0';

 epcqio_clear_buffers <= '0';

 epcqio_write_data <= '0';

 epcqio_read_data <= '0';

 epcqio_erase_sector <= '0';

 epcqio_enable_4byte <= '0';

 epcqio_address_reg <= (others => '0');

 second_word <= false;

 epcqio_numwords_reg <= (others => '0');

 ru_address_reg <= (others => '1');

 ru_reconfig_reg <= '0';

 ru_reread_params_reg <= '0';

 cm_load_config_reg <= '0';

 start_monitoring_reg <= '0';

 read_monitoring_reg <= '0';

 read_cabac_reg <= '0';

 read_dac_reg <= '0';

 read_dip_reg <= '0';

 read_MAX14802_reg <= '0';

 read_croc_reg <= '0';

 switches_reg <= (others => '0');

 get_croc_reg <= '0';

 elsif rising_edge(clock) then

 --Register data in to reduce timing requirements

 data_in_reg <= data_in;

 data_port_reg <= data_port;

 data_valid_reg <= data_valid;

 data_addr_reg <= data_addr;

 source_iface_reg <= source_iface;

 --Default states

 set_master <= '0';

 set_slave <= '0';

 enable_ext_start_seq <= '0';

 disable_ext_start_seq<= '0';

 start_sequence <= '0';

 stop_sequence <= '0';

 step_sequence <= '0';

 read_program <= '0';

 read_timing <= '0';

 read_output <= '0';

 read_ind_rep <= '0';

 read_ind_func <= '0';

 read_ind_sub_add <= '0';

 read_ind_sub_rep <= '0';

 reset_cabac <= '0';

 reset_dac <= '0';

 reset_dip <= '0';

 reset_MAX14802 <= '0';

 -- enable_VR0 <= '0';

 -- enable_VR1 <= '0';

 -- enable_VR2 <= '0';

 -- enable_VR3 <= '0';

 -- enable_VR4 <= '0';

 -- enable_VR5 <= '0';

 -- enable_VR6 <= '0';

 enable_CLEAR <= '0';

 enable_LATCH <= '1';

 send_cmd_ack <= '0';

 clear_error <= '0';

 read_config <= '0';

 erase_sequencer <= '0';

 epcqio_clear_buffers <= '0';

 epcqio_write_data <= '0';

 epcqio_read_data <= '0';

 epcqio_erase_sector <= '0';

 epcqio_enable_4byte <= '0';

 cmd_to_ack <= (others => '0');

 ru_reconfig_reg <= '0';

 ru_reread_params_reg <= '0';

 cm_load_config_reg <= '0';

 start_monitoring_reg <= '0';

 read_monitoring_reg <= '0';

 read_cabac_reg <= '0';

 read_dac_reg <= '0';

 read_dip_reg <= '0';

 read_MAX14802_reg <= '0';

 read_croc_reg <= '0';

 get_croc_reg <= '0';

 switches_reg <= switches_reg; --Explicitly register the

switches

 --We can set this to false because it is updated next clock cycle,

will

 --be set to true if we have a two-word command.

 second_word <= false;

 --If the data is coming into the command UDP port and is valid,

parse it

 if (data_port_reg = UDP_PORT_COMMAND and

 data_valid_reg = '1') then

 case data_in_reg(23 downto 0) is

 -- Board ID control

 when CMD_SET_IP =>

 second_word <= true;

 prev_cmd := CMD_SET_IP;

 board_daq_id <= data_in_reg(31 downto 24);

 when CMD_TOGGLE_PONG =>

 enable_pong <= not enable_pong;

 -- Board state control

 when CMD_SET_MST =>

 set_master <= '1';

 when CMD_SET_SLV =>

 set_slave <= '1';

 when CMD_ENABLE_EXT_START_SEQ =>

 enable_ext_start_seq <= '1';

 when CMD_DISABLE_EXT_START_SEQ =>

 disable_ext_start_seq <= '1';

 -- Sequence controls

 when CMD_START_SEQ =>

 start_sequence <= '1';

 when CMD_STOP_SEQ =>

 stop_sequence <= '1';

 when CMD_STEP_SEQ =>

 step_sequence <= '1';

 when CMD_CLEAR_ERROR =>

 clear_error <= '1';

 -- Reads for various sequencer memories

 when CMD_READ_PROG =>

 read_program <= '1';

 when CMD_READ_TIME =>

 read_timing <= '1';

 when CMD_READ_OUT =>

 read_output <= '1';

 when CMD_READ_INDF =>

 read_ind_func <= '1';

 when CMD_READ_INDR =>

 read_ind_rep <= '1';

 when CMD_READ_INDSA =>

 read_ind_sub_add <= '1';

 when CMD_READ_INDSR =>

 read_ind_sub_rep <= '1';

 --Read all configuration blocks

 when CMD_READ_CONFIG =>

 read_config <= '1';

 -- Erase our sequencer

 when CMD_ERASE_SEQ =>

 erase_sequencer <= '1';

 -- Reset CABAC

 when CMD_RESET_CABAC =>

 reset_cabac <= '1';

 -- Read CABAC status register

 when CMD_READ_CABAC =>

 read_cabac_reg <= '1';

 -- Reset DAC

 when CMD_RESET_DAC =>

 reset_dac <= '1';

 -- Read DAC status register

 when CMD_READ_DAC =>

 read_dac_reg <= '1';

 -- Reset DIP

 when CMD_RESET_DIP =>

 reset_dip <= '1';

 -- Read DIP status register

 when CMD_READ_DIP =>

 read_dip_reg <= '1';

 -- Reset MAX14802

 when CMD_RESET_MAX14802 =>

 reset_MAX14802 <= '1';

 -- Read MAX14802 status register

 when CMD_READ_MAX14802 =>

 read_MAX14802_reg <= '1';

 -- Enable 100VP VSUB SUPPLY

 when CMD_ENABLE_HV =>

 enable_100VP <= '1';

 -- Enable VR0

 when CMD_ENABLE_VR0 =>

 enable_VR0 <= '1';

 -- Enable VR1

 when CMD_ENABLE_VR1 =>

 enable_VR1 <= '1';

 -- Enable VR2

 when CMD_ENABLE_VR2 =>

 enable_VR2 <= '1';

 -- Enable VR3

 when CMD_ENABLE_VR3 =>

 enable_VR3 <= '1';

 -- Enable VR4

 when CMD_ENABLE_VR4 =>

 enable_VR4 <= '1';

 -- Enable VR5

 when CMD_ENABLE_VR5 =>

 enable_VR5 <= '1';

 -- Enable VR6

 when CMD_ENABLE_VR6 =>

 enable_VR6 <= '1';

 -- Enable CLEAR

 when CMD_ENABLE_CLEAR =>

 enable_CLEAR <= '1';

 -- Enable LATCH

 when CMD_ENABLE_LATCH =>

 enable_LATCH <= '0';

 -- Disable 100VP VSUB supply

 when CMD_DISABLE_HV =>

 enable_100VP <= '0';

 -- Disable VR0

 when CMD_DISABLE_VR0 =>

 enable_VR0 <= '0';

 -- Disable VR1

 when CMD_DISABLE_VR1 =>

 enable_VR1 <= '0';

 -- Disable VR2

 when CMD_DISABLE_VR2 =>

 enable_VR2 <= '0';

 -- Disable VR3

 when CMD_DISABLE_VR3 =>

 enable_VR3 <= '0';

 -- Disable VR4

 when CMD_DISABLE_VR4 =>

 enable_VR4 <= '0';

 -- Disable VR5

 when CMD_DISABLE_VR5 =>

 enable_VR5 <= '0';

 -- Disable VR6

 when CMD_DISABLE_VR6 =>

 enable_VR6 <= '0';

 -- Enable POS FRONT-END SUPPLY

 when CMD_ENABLE_POS =>

 enable_pos <= '1';

 -- Enable NEG FRONT-END SUPPLY

 when CMD_ENABLE_NEG =>

 enable_neg <= '1';

 -- Disable POS FRONT-END SUPPLY

 when CMD_DISABLE_POS =>

 enable_pos <= '0';

 -- Disable NEG FRONT-END SUPPLY

 when CMD_DISABLE_NEG =>

 enable_neg <= '0';

 -- Commands to EPCQIO/remote update

 when CMD_EPCQ_READ =>

 epcqio_read_data <= '1';

 epcqio_numwords_reg <= data_in_reg(30 downto 24);

 when CMD_EPCQ_WRITE =>

 epcqio_write_data <= '1';

 epcqio_numwords_reg <= data_in_reg(30 downto 24);

 when CMD_EPCQ_CLEAR =>

 epcqio_clear_buffers <= '1';

 when CMD_EPCQ_SETA =>

 second_word <= true;

 prev_cmd := CMD_EPCQ_SETA;

 when CMD_EPCQ_EN4B =>

 epcqio_enable_4byte <= '1';

 when CMD_EPCQ_ERASE_SEC =>

 epcqio_erase_sector <= '1';

 when CMD_RU_RECONFIG =>

 ru_reconfig_reg <= '1';

 when CMD_RU_ADDRESS =>

 second_word <= true;

 prev_cmd := CMD_RU_ADDRESS;

 --Presets for 'F' (factory) and 'A' (application) addresses

 if (data_in_reg(31 downto 24) = X"46") then

 second_word <= false;

 ru_address_reg <= X"000000";

 elsif (data_in_reg(31 downto 24) = X"41") then

 second_word <= false;

 ru_address_reg <= X"100000";

 end if;

 when CMD_RU_REREAD =>

 ru_reread_params_reg <= '1';

 when CMD_CONF_LOAD =>

 cm_config_page_reg <= data_in_reg(27 downto 24);

 cm_load_config_reg <= '1';

 --Start reading monitoring status

 when CMD_START_MONITORING =>

 start_monitoring_reg <= '1';

 when CMD_GET_MONITORING =>

 read_monitoring_reg <= '1';

 when CMD_SET_SWITCHES =>

 switches_reg <= data_in_reg(31 downto 24);

 when CMD_READ_CROC =>

 read_croc_reg <= '1';

 when CMD_GET_CROC =>

 get_croc_reg <= '1';

 when others =>

 --Insert error generating here, maybe

 end case;

 --Send an acknowledgement of the command

 send_cmd_ack <= '1';

 cmd_to_ack <= data_in_reg;

 reply_iface <= source_iface_reg;

 reply_addr <= data_addr_reg;

 -- Reads the values from the Set switches command

 if data_in_reg(23 downto 0) = CMD_GET_SWITCHES then

 cmd_to_ack(31 downto 24) <= switches_reg;

 end if;

 --For two word commands

 if second_word then

 if prev_cmd = CMD_EPCQ_SETA then

 send_cmd_ack <= '0';

 epcqio_address_reg <= data_in_reg;

 elsif prev_cmd = CMD_RU_ADDRESS then

 send_cmd_ack <= '0';

 ru_address_reg <= data_in_reg(23 downto 0);

 elsif prev_cmd = CMD_SET_IP then

 send_cmd_ack <= '0';

 if (data_in_reg /= chip_id_lsb) then

 board_daq_id <= X"00";

 end if;

 end if;

 second_word <= false;

 end if;

 end if;

 end if;

 end process;

end architecture vhdl_rtl;

