-- Title : ODILE Top Controller

-- Project

-- File : odile controller.vhd

-- Author : Ryan Thomas <ryant@uchicago.edu>
-— Company : University of Chicago

-- Created : 2020-03-12

-- Last update: 2021-05-27

-- Platform

-- Standard : VHDL'93/02

-- Description: Top Controller for the ODILE board. Produces several
different
-- reset signals and handles start/stop of sequencer

--!\file odile controller.vhd

library ieee;
use ieee.std logic 1164.all;

--!Helper package for blocks that interface with the commands from the
DAQ.
package ODILE command list is

subtype command is std logic vector (23 downto 0);

-- List of supported commands. Note if you add a command, add it to the
-- 1s valid command function below so the response generator knows it

is
-- valid
-- ! SIP Allows to set the IP and MAC address from the board ID
constant CMD SET IP : command := X"53 49 50";
-- ! PNG, toggle on or off PONG messages in data flow
constant CMD TOGGLE PONG : command := X"50 4E 47";
--! GID get FPGA chip unique ID
constant CMD GET CHIP ID : command := X"47 49 44";
--1MST, define your ODILE board as the master board.
constant CMD SET MST command := X"4D 53 54";
--1SLV, define your ODILE board as a slave board.
constant CMD SET SLV : command := X"53 4C 56";
-—1EXS, enable start_sequencer signal coming from outside (RJ45).
constant CMD ENABLE EXT START SEQ : command := X"45 58 53";
--!DXS, enable start sequencer signal coming from outside (RJ45).
constant CMD DISABLE EXT START SEQ : command := X"44 58 53";
--1SEX, Start EXposure. Starts clocking to take an image
constant CMD START SEQ : command := X"53 45 58";
--1AEX, Abort EXposure. Stops clocking to take an image.
constant CMD STOP SEQ : command := X"41 45 58";
--!STS, STep Sequencer. Steps the sequencer
constant CMD STEP SEQ : command := X"53 54 53";

--!1GCT, Get Compile Time. Tells the ODILE to report the compile time of
the firmware, if it was compiled with that option.
constant CMD GET TS : command := X"47 43 54";

--!GCL, Get Command List. Returns the list of currently supported
commands .

constant CMD GET CMD LIST : command := X"47 43 4C";

--!GUT, Get UpTime. Gets seconds board has been up since last reset.
Note: this is derived from counting clock cycles, so it will not be
accurate.

constant CMD GET UPTIME : command := X"47 55 54";

--!INV, INValid. Indicates that the previous command was not
recognized.

constant CMD INVALID : command := X"49 4E 56";

--!DON, DONe. Sent by the ODILE to indicate that the previous command
has finished. Not supported for all commands.

constant CMD DONE : command := X"44 4F 4E";

--!ERR, ERRor. Sent by the ODILE to indicate an error with the previous
command.

constant CMD ERROR : command := X"45 52 52";

-—-!'RDP, ReaD Program. Tells the ODILE to read back the sequencer
program memory

constant CMD READ PROG : command := X"52 44 50";
-—-!RDT, ReaD Timing. Reads back the sequencer timing memory
constant CMD READ TIME : command := X"52 44 54";
--!RDO, ReaD Output. Reads the sequencer output memory
constant CMD READ OUT : command := X"52 44 4F";

--!GEC, Get Error Code. Tells the ODILE to report the current error
code (0x0 if no error)

constant CMD GET ERROR : command := X"47 45 43";
--1CER, Clear ERror. Clears the current error code.

constant CMD CLEAR ERROR : command := X"43 45 43";
--!RSC, ReSet Cabac. Triggers the "reset cabac" signal.
constant CMD RESET CABAC : command := X"52 53 43";

--!RDC, Read Cabac. Reads the current value of the
"Reg32b cabacspi ReadOnly" register.
constant CMD READ CABAC : command := X"52 44 43";

-—!RSD, ReSet DAC. Triggers the "reset dac" signal.

constant CMD RESET DAC : command := X"52 53 44";

--!RDD, Read DAC. Reads the current value of the
"Reg32b dacspi ReadOnly" register.

constant CMD READ DAC : command := X"52 44 44";

--!RSV, ReSet DIP. Triggers the "reset dip" signal.

constant CMD RESET DIP : command := X"52 53 56";

--1RDV, Read DIP. Reads the current value of the
"Reg32b dipspi ReadOnly" register.

constant CMD READ DIP : command := X"52 44 56";

--1!CBS, Clear MAX14802. Triggers the "reset MAX14802" signal.
constant CMD RESET MAX14802 : command := X"43 42 53";
-—-1RDM, Read MAX14802. Reads the current wvalue of the

"Reg32b MAX14802serial ReadOnly" register.
constant CMD READ MAX14802 : command := X"52 44 4D";

-— Enables

-- B3018 16 : VSUB Generator Block;

-- B3018 17 1, B3018 17 2, B3018 17 3, B3018 17 4 : Bias Generator
Block (There are four identical channels);

-- B3018 18 1, B3018 18 2: Bias Generator with Offset Block (There are
two identical channels);

--1EHV,
constant

--1VRO,
constant

--1VR1,
constant

--1VR2,
constant

--1VR3,
constant

--1VR4,
constant

--1VR5,
constant

--1VRo,
constant

--!DHV,
constant

-—10RV,
constant

--11RV,
constant

--12RV,
constant

--13RY,
constant

--14RV,
constant

--!5RV,
constant

--16RV,
constant

--!CON,
constant

--!1LON,
constant

--1EPS,

Enable the 100volts VSUB supply (High voltage).

CMD_ENABLE HV

Enable the

CMD_ENABLE_VRO

Enable the

CMD_ENABLE VR1

Enable the

CMD_ENABLE_VR2

Enable the

CMD_ENABLE_VR3

Enable the

CMD_ENABLE VR4

Enable the

CMD_ENABLE_VR5

Enable the

command
"TPS7A330" signal.
command

"TPS7A330" signal.
: command
"TPS7A330" signal.
: command
"TPS7A330" signal.
command

"TPS7A330" signal.
: command
"TPS7A330" signal.
: command
"TPS7A330" signal.
command

CMD_ENABLE_VR6

Disable the 100volts VSUB supply

CMD DISABLE HV

DISABLE the

"TPSTA330"

CMD DISABLE VRO

DISABLE the

"TPST7TA330"

CMD DISABLE VR1

DISABLE the

"TPSTA330"

CMD DISABLE_ VR2

DISABLE the

"TPSTA330"

CMD DISABLE VR3

DISABLE the

"TPST7TA330"

CMD DISABLE VR4

DISABLE the

"TPSTA330"

CMD_DISABLE_VR5

DISABLE the

"TPSTA330"

CMD DISABLE VR6

command

signal.
command

signal.
command

signal.
command

signal.
command

signal.
command

signal.
command

signal.
command

Enable the "TPS7A330" signal.
CMD_ENABLE CLEAR

command

Enable the "TPS7A330" signal.
CMD_ENABLE LATCH

constant CMD ENABLE POS

--!ENS,

constant CMD ENABLE NEG

--!DPS,

command

command

command

:= X"45 48 56";

X"56 52 30";

X"56 52 31";

X"56 52 32";

X"56 52 33";

X"56 52 34";

X"56 52 35";

X"56 52 36";

(High voltage) .

1= X"44 48 56";

= X"30 52 56";

X"31 52 56";

X"32 52 56";

X"33 52 56";

X"34 52 56";

X"35 52 56";

X"36 52 56";

X"43 4F 4E";

X"4C_AF 4E";

Enable Front-end positive supply.

X"45 50 53";

Enable Front-end negative supply.

X"45 4E_53";

Disable Front-end positive supply.

constant CMD DISABLE POS : command := X"44 50 53";
--!DNS, Disable Front-end negative supply.
constant CMD DISABLE NEG : command := X"44 4E 53";

--!RCR, Read CRoc. Initiates a request to the croc interface to read
the CROC register. To read the result, use the GCR command.

constant CMD READ CROC : command := X"52 43 52";
--!GCR, Get CRoc. Reads the 96-bit croc register to the PC.
constant CMD GET CROC : command := X"47 43 52";

--!RDB, ReaD configuration Blocks. Reads the all the configuration
register memories.

constant CMD READ CONFIG : command := X"52 44 42";

--!'ERS, ERase Sequencer. Erases all the sequencer memories (sets them
to 0x0).

constant CMD ERASE SEQ : command := X"45 52 53";

--!RDF, ReaD indirect Function. Reads the indirect function sequencer
memory.

constant CMD READ INDF : command := X"52 44 46";

--!'RDR, ReaD indirect Reps. Reads the indirect function repitition
sequencer memory.

constant CMD READ INDR : command := X"52 44 52";

-—!1RDA, ReaD indirect Address. Reads the indirect function address
sequencer memory.

constant CMD READ INDSA : command := X"52 44 41";

--!RDS, Read indirect Sub reps. Reads the indirect subfunction
repitition sequencer memory.

constant CMD READ INDSR : command := X"52 44 53";

--!EWR, EPCQ WRite. Writes the current EPCQ FIFO buffer contents to the
EPCQ flash, starting at the currently set address. Requires an 8-bit
prefix to specify the number of 32-bit words to write.

constant CMD EPCQ WRITE : command := X"45 57 52";

--!ERD, EPCQ ReaD. Reads the EPCQ flash memory, starting at the
currently set address.

constant CMD EPCQ READ : command := X"45 52 44";
--1ERB, EPCQ Reset Buffers. Clears the EPCQIO read/write buffers
constant CMD EPCQ CLEAR : command := X"45 52 42";

--!ESA, EPCQ Set Address. Sets the start address for read/write
commands. Two-word command, the address should be sent in the second
word.

constant CMD EPCQ SETA : command := X"45 53 41";

--!'E4B, EPCQ enable 4 Byte. Debug command to enable 4 byte addressing
in the Altera EPCQIO block.

constant CMD EPCQ EN4B : command := X"45 34 42";

--1ESE, EPCQ Sector Erase. Erase the sector containing the currently
set address.

constant CMD EPCQ ERASE SEC : command := X"45 53 45";

--!'RUA, Remote Update Address. Sets the start address to load firmware
from. Two word command with the second word being the start address.

constant CMD RU ADDRESS : command := X"52 55 41";

--!\brief RUR, Remote Update Reconfig. Starts the process of loading
the firmware from the address sset with RUA.

load the factory firmware from 0xO0,

--!Note that if this address does not

--!contain a valid firmware image, the FPGA will automatically try to
if that also does not contain a wvalid
—-—-!firmware the FPGA will need to be manually reflashed.

constant CMD RU RECONFIG command := X"52 55 52";

--!'RUL, Remote Update Reload. Debug command that rereads the Altera

remote update block parameters.

constant CMD RU REREAD command := X"52 55 4C";

-—-!\brief LDC, LoaD Config. Loads configuration register settings from

one of the ten pages stored on the flash memory. The page should be
specified in the

--!8 bit prefix. Valid pages range from 0x0 to OxA.
constant CMD CONF_ LOAD command := X"4C 44 43";

--1SCM,
constant CMD START MONITORING
--!1GCM, Get CCD Monitoring. Reads
top monitoring results.
constant CMD GET MONITORING
-—-1SSW, Set SWitches.

command
Sets the hardware switches.

Start CCD Monitoring. Activates the start monitoring signal.
command

1= X"53 43 44d";
the 18x32 bit register of the

= X"47 43 44d";
The 8 switch wvalues

should be specified in binary in the 8-bit prefix.

constant CMD SET SWITCHES command := X"53 53 57";
--!GSW, Get SWitches. Gets the hardware switches.
constant CMD GET SWITCHES command := X"47 53 57";

--!Returns true i1f command is wvalid

function is valid command (cmd

type command array is array(natural range <>)

--!List of valid commands.
constant VALID COMMANDS
CMD_SET SLV,CMD SET IP,

Update

CMD DISABLE EXT START SEQ,
CMD GET TS, CMD GET CMD LIST,

command)

command
CMD_TOGGLE PONG, CMD GET CHIP ID,

CMD_START_ SEQ,

return boolean;

of command;
this if you add a command above
array (CMD_SET MST,

CMD ENABLE_EXT START SEQ,
CMD STOP SEQ, CMD STEP SEQ,

CMD_READ PROG,

CMD READ TIME, CMD READ OUT, CMD GET ERROR, CMD CLEAR ERROR,

CMD RESET DAC,

CMD _READ DAC, CMD RESET DIP, CMD READ DIP, CMD RESET MAX14802,

CMD READ MAX14802,

CMD_ ENABLE HV, CMD ENABLE VRO, CMD ENABLE VR1, CMD ENABLE VRZ,
CMD_ ENABLE VR3, CMD ENABLE VR4, CMD ENABLE VR5, CMD ENABLE VR6,

CMD DISABLE HV, CMD DISABLE VRO, CMD DISABLE VR1, CMD DISABLE VR2,
CMD DISABLE VR3, CMD DISABLE VR4, CMD DISABLE VR5, CMD DISABLE VRE,

CMD_ ENABLE CLEAR, CMD ENABLE LATCH,

CMD_ENABLE NEG, CMD DISABLE POS,

CMD_ENABLE_POS,

CMD DISABLE NEG,

CMD READ CONFIG, CMD ERASE SEQ,

CMD_READ INDF,

CMD READ INDR,
CMD READ INDSA, CMD READ INDSR, CMD EPCQ WRITE,

CMD_EPCQ READ,
CMD EPCQ CLEAR, CMD EPCQ SETA, CMD EPCQ EN4B,

CMD_EPCQ ERASE_SEC,
CMD RU ADDRESS, CMD RU RECONFIG, CMD RU REREAD,

CMD_CONF_LOAD,
CMD_START MONITORING, CMD GET MONITORING,

CMD_SET SWITCHES,
CMD_GET_ SWITCHES, CMD GET UPTIME) ;

end package ODILE command list;

package body ODILE command list is
--!Scans over list of valid commands and returns true if cmd is in that
list.
function is valid command (cmd : command) return boolean is
begin
for I in VALID COMMANDS'range loop
if cmd = VALID_COMMANDS(I) then
return true;
end if;
end loop;
return false;
end function is valid command;

end package body ODILE command list;

library ieee;

use ieee.std logic 1164.all;

use leee.numeric std.all;

use ieee.math real.all;

use work.eth common.all;

use work.ODILE command list.all;

--!\brief Controller that parses data from the Ethernet interface and
--linterprets any commands from the DAQ.

entity odile controller is

port (
clock : in std logic;
reset : in std logic;

-=1\{

data in : in std logic vector (31 downto 0);
data valid : in std logic;

data port : in std logic vector (15 downto 0);
data addr : in std logic vector (79 downto 0);
source_iface : in std logic _vector (3 downto 0);
-—-1\}

N

set master : out std logic;

set slave : out std logic;

enable ext start seq : out std logic;
disable ext start seqg : out std logic;
-=I1\}

—— I\
start sequence : out std logic;
step sequence : out std logic;
stop sequence : out std logic;
--1\}

——1\{

read triggers : out std logic vector (15 downto 0);

clear error : out std logic;

reset cabac : out std logic;
reset dac : out std logic;
reset dip : out std logic;
reset MAX14802 : out std logic;

erase_sequencer : out std logic;
enable 100VP : out std logic;
enable VRO : out std logic;
enable VRI1 : out std logic;
enable VRZ : out std logic;
enable VR3 : out std logic;
enable VR4 : out std logic;
enable VR5 : out std logic;
enable VR6 : out std logic;
enable CLEAR : out std logic;
enable LATCH : out std logic;

-—1\}

—— I\
enable pos : out std logic;
enable neg : out std logic;

—-1\}

—- 1\
epcgio read data : out std logic;
epcgio write data : out std logic;
epcgio _enable 4byte : out std logic;
epcgio erase sector : out std logic;
epcgio clear buffers : out std logic;

epcgio address : out std logic vector (31 downto 0);

epcgio num words : out std logic vector (6 downto 0);

-=1\}

—— I\
ru do reconfig : out std logic;
ru application address : out std logic vector (23 downto 0);
ru_reread params : out std logic;
—-T\}

oI\

--!Signals the top monitoring block to sample it's ADCs

start monitoring : out std logic;

--1Tells the Ethernet interface to read the 18x32 bit monitoring
register

read monitoring : out std logic;

--!Signals the CROC controller to read the current CROC status.

read croc : out std logic;

-—!Whether to send an acknowledgment of the command to the DAQ

send cmd_ack : out std logic;

-—-!Command to acknowledge

cmd to ack : out std logic vector (31 downto 0);

--!Read configuration from flash

cm load config : out std logic;

--!Config page to load (from 0-9)

cm_config page : out std logic vector (3 downto 0);

--!Read our current configuration registers

read config : out std logic;

--!Interface that generated the command

reply iface : out std logic vector (3 downto 0);

reply addr : out std logic vector (79 downto 0);

--!Hardware switches

switches : out std logic vector (7 downto 0);

enable pong : out std logic;

board dag id : out std loglc vector (7 downto 0);
chip id 1sb : in std logic vector (31 downto 0)
);

—-1\)

end entity odile controller;

architecture vhdl rtl of odile controller is

signal data in reg : std logic_vector (31
downto 0) := (others => '0"');

signal data port reg : std logic vector (15
downto 0) := (others => '0"');

signal data valid reg : std logic
= '0";

signal data addr reg : std logic vector (79
downto 0) := (others => '0"');

signal source iface reg : std logic vector (3
downto 0) := (others => '0"');

signal read program, read timing, read output : std logic

= '0';

signal read cabac reg : std logic

= '0";
signal read dac reg : std logic
= '0";
signal read dip reg : std logic
= '0";
signal read MAX14802 reg : std logic
= '0";
signal read ind func, read ind rep : std logic
= '0";
signal read ind sub add, read ind sub rep : std logic
= '0";
signal epcgio address reg : std logic vector (31
downto 0) := (others => '0'");
signal second word : boolean
:= false;
signal epcgio numwords reg : std logic vector (6
downto 0) := (others => '0"'");
signal ru reconfig reg : std logic
= '0";
signal ru address reg : std logic vector (23
downto 0) := (others => '1"');
signal ru reread params_reg : std logic
= '0";
signal cm load config reg : std logic
= '0";
signal cm config page reg : std logic vector (3
downto 0) := (others => '0"'");
signal start monitoring reg : std logic
= '0";
signal read monitoring reg : std logic
= '0";
signal switches reg : std logic vector (7
downto 0) := (others => '0"'");
signal read croc_reg : std logic
= '0";
signal get croc reg : std logic
= '0"; - B B
begin

--Uses a single read triggers bus to our ccdcontrol interface because
we have many
--signals and I don't want to code every single one by hand.
read triggers (0) <= read program;
read triggers(1l) <= read timing;
read triggers(2) <= read output;
read triggers(3) <= read ind func;
read triggers (4) <= read ind rep;
read _triggers(5) <= read ind sub_ add;
read triggers(6) <= read ind sub rep;
read triggers(7) <= read cabac_reg;
read triggers(8) <= get croc reg;
read triggers(9) <= read dac_reg;
read triggers(10) <= read dip_reg;
read triggers(11) <= read MAX14802 reg;
read triggers (15 downto 12) <= (others => '0'");

0
1
2
3
4
5
6
5
8
9
1
1

epcgio address <= epcgio address reg;
epcgio num words <= epcgio numwords_ reg;
ru do reconfig <= ru reconfig reg;

ru application address <= ru address_ reg;

ru reread params <= ru reread params_reg;

cm load config <= cm_load config reg;
cm _config page <= cm _config page reg;
start monitoring <= start monitoring reg;
read monitoring <= read monitoring reg;
switches <= switches reg;

read croc <= read croc reg;

command parser : process (clock, reset)

variable prev_cmd : command := (others => '0");
begin
if reset = 'l' then
-—-Default states
board dag_id <= X"05";
enable pong <= '1l";
set master <= '0";
set slave <="'0";
enable ext start seq <= '0';
disable ext start seg<= '0';
start sequence <= '0";
stop sequence <= '0"';
step sequence <= '0"';
read program <= '0";
read timing <= "'0";
read output <= '0";
read ind rep <= '0";
read ind func <= '0";
read ind sub add <= '0";
read ind sub rep <= '0";
reset cabac <="'0";
reset dac <="'0";
reset dip <='0";
reset MAX14802 <= "'0";
enable 100VP <= '0";
enable VRO <="'0";
enable VRI <= '0";
enable VR2 <= '0";
enable VR3 <= '0";
enable VR4 <= '0";
enable VR5 <= '0";
enable VR6 <= '0";
enable CLEAR <= "'0";
enable LATCH <= '1l";
enable pos <= '0";
enable neg <= '0";
data in reg <= (others => '0"');
data port reg <= (others => '0"'");
data valid reg <= '0";
clear error <= '0";
erase_sequencer <= '0";
epcgio_clear buffers <= '0';
epcgio write data <= '0";
epcgio read data <= '0";
epcgio erase sector <= '0';

epcgio enable 4byte <= '0';
epcgio address reg <= (others => '0'");
second word <= false;

epcgio numwords reg <= (others => '0'");

ru_address_reg <= (others => '1");
ru reconfig reg <='0";
ru reread params _reg <= '0';
cm_load config reg <='0";
start monitoring reg <= '0';
read monitoring reg <= '0';
read cabac reg <= '0";
read dac_ reg <= '0";
read dip reg <= '0";
read MAX14802 reg <= '0";
read croc_reg <= '0";
switches reg <= (others => '0"'");
get croc reg <= '0";

elsif rising edge(clock) then
--Register data in to reduce timing requirements

data in reg <= data in;
data port reg <= data port;
data valid reg <= data valid;
data addr reg <= data_ addr;
source iface reg <= source_ iface;
-—-Default states
set master <= '0";
set slave <="'0";
enable ext start seq <= '0';
disable ext start seg<= '0';
start sequence <="'0";
stop_ sequence <= '0";
step sequence <= '0"';
read program <= '0";
read timing <= '0";
read output <= '0";
read ind rep <= '0";
read ind func <="'0";
read ind sub add <= '0";
read ind sub rep <= '0";
reset cabac <='0";
reset dac <="'0";
reset dip <='0";
reset MAX14802 <= '0";
-- enable VRO <= "'0";
-— enable VRI1 <= '0";
-— enable VR2 <= '0";
-— enable VR3 <= '0";
-— enable VR4 <= '0";
-— enable VRS <= '0";
-— enable VR6 <= '0";
enable CLEAR <= '0";
enable LATCH <= '1";
send cmd_ ack <= '0";
clear error <= '0";
read config <= '0";
erase_sequencer <= '0";
epcgio clear buffers <= '0';
epcgio write data <= '0";
epcgio read data <= '0";
epcgio erase sector <= '0';

epcgio enable 4byte <= '0';
cmd to ack <= (others => '0"');

switch

will

parse

ru reconfig reg <= '0";

ru reread params reg <= '0';
cm_load config reg <='0";
start monitoring reg <= '0';
read monitoring reg <= '0';
read cabac reg <= '0";

read dac_reg <= '0";

read dip reg <= '0";

read MAX14802 reg <='0";
read croc_reg <= '0";
get croc reg <= '0";
switches reg <= switches reg; --Explicitly register the
es

--We can set this to false because it is updated next clock cycle,

--be set to true if we have a two-word command.
second word <= false;

--If the data is coming into the command UDP port and is valid,
it
if (data port reg = UDP_PORT COMMAND and
data valid reg = 'l') then
case data in reg (23 downto 0) is

when CMD SET IP =>

second word <= true;

prev_cmd := CMD_SET TIP;

board dag id <= data in reg (31 downto 24);
when CMD TOGGLE PONG =>

enable pong <= not enable pong;

when CMD SET MST =>

set master <= '1l';

when CMD SET SLV =>
set slave <= 'l1';

when CMD_ENABLE EXT START SEQ =>
enable ext start seq <= 'l';

when CMD DISABLE EXT START SEQ =>
disable ext start seqg <= 'l';

when CMD START SEQ =>

start sequence <= 'l1"';
when CMD STOP SEQ =>

stop sequence <= 'l1';
when CMD STEP SEQ =>

step sequence <= 'l1l';

when CMD CLEAR ERROR =>
clear error <= 'l';

when CMD READ PROG =>
read program <= 'l1';
when CMD READ TIME =>
read timing <= '1';
when CMD READ OUT =>
read output <= '1';
when CMD READ INDF =>

read ind func <= '1';
when CMD READ INDR =>
read ind rep <= 'l1';

when CMD READ INDSA =>
read ind sub add <= 'l1';
when CMD READ INDSR =>
read ind sub rep <= 'l';
--Read all configuration blocks
when CMD READ CONFIG =>
read config <= 'l1l"';
-- Erase our sequencer
when CMD ERASE SEQ =>
erase sequencer <= 'l';
-— Reset CABAC
when CMD RESET CABAC =>
reset cabac <= 'l";
-—- Read CABAC status register
when CMD READ CABAC =>
read cabac reg <= 'l';

-- Reset DAC
when CMD RESET DAC =>
reset dac <= '1"';

-- Read DAC status register
when CMD _READ DAC =>
read dac reg <= 'l1';

-- Reset DIP
when CMD RESET DIP =>
reset dip <= 'l';

-- Read DIP status register
when CMD READ DIP =>
read dip reg <= '1';

-— Reset MAX14802
when CMD RESET MAX14802 =>
reset MAX14802 <= '1';

-- Read MAX14802 status register
when CMD READ MAX14802 =>
read MAX14802 reg <= '1';

-— Enable 100VP VSUB SUPPLY
when CMD_ENABLE HV =>
enable 100VP <= '1';

-— Enable VRO
when CMD ENABLE VRO =>
enable VRO <= '1";

-- Enable VRI1
when CMD ENABLE VRl =>
enable VRl <= '1';

-- Enable VR2
when CMD ENABLE VR2 =>
enable VR2 <= '1';

-— Enable VR3
when CMD ENABLE VR3 =>
enable VR3 <= '1";

-—- Enable VR4
when CMD ENABLE VR4 =>
enable VR4 <= '1';

-- Enable VR5
when CMD ENABLE VR5 =>
enable VRS <= '1"';

-- Enable VR6
when CMD ENABLE VR6 =>
enable VR6 <= '1';

-—- Enable CLEAR
when CMD ENABLE CLEAR =>
enable CLEAR <= '1';

-- Enable LATCH
when CMD ENABLE LATCH =>
enable LATCH <= '0';

-- Disable 100VP VSUB supply
when CMD DISABLE HV =>
enable 100VP <= '0';

-- Disable VRO
when CMD DISABLE VRO =>
enable VRO <= '0';

-— Disable VR1
when CMD DISABLE VRl =>
enable VRl <= '0';

-— Disable VR2
when CMD DISABLE VR2 =>
enable VR2 <= '0';

-- Disable VR3
when CMD DISABLE VR3 =>
enable VR3 <= '0';

—-— Disable VR4
when CMD DISABLE VR4 =>
enable VR4 <= '0';

-- Disable VR5
when CMD DISABLE VR5 =>
enable VRS <= '0';

—-— Disable VR6
when CMD DISABLE VR6 =>
enable VR6 <= '0';

-—- Enable POS FRONT-END SUPPLY
when CMD ENABLE POS =>
enable pos <= '1';

-- Enable NEG FRONT-END SUPPLY
when CMD ENABLE NEG =>
enable neg <= '1';

-— Disable POS FRONT-END SUPPLY
when CMD_ DISABLE POS =>
enable pos <= '0';

—-— Disable NEG FRONT-END SUPPLY
when CMD DISABLE NEG =>
enable neg <= '0';

when CMD EPCQ READ =>
epcgio read data <= '1";
epcgio numwords reg <= data in reg (30 downto 24);
when CMD EPCQ WRITE =>
epcgio write data <= '1";
epcgio numwords reg <= data in reg (30 downto 24);
when CMD EPCQ CLEAR =>
epcgio clear buffers <= 'l1l';
when CMD EPCQ SETA =>
second word <= true;
prev_cmd := CMD_EPCQ SETA;
when CMD EPCQ EN4B =>
epcgio enable 4byte <= '1';
when CMD EPCQ ERASE SEC =>

epcgio _erase sector <= 'l';
when CMD RU RECONFIG =>
ru reconfig reg <= 'l1';

when CMD RU ADDRESS =>
second word <= true;
prev_cmd := CMD RU ADDRESS;
--Presets for 'F' (factory) and 'A' (application) addresses
if (data_in reg (31 downto 24) = X"46") then
second word <= false;
ru_address reg <= X"000000";
elsif (data in reg (31 downto 24) = X"41") then
second word <= false;
ru_address reg <= X"100000";
end if;
when CMD RU REREAD =>
ru reread params reg <= 'l';
when CMD CONF LOAD =>
cm config page reg <= data in reg(27 downto 24);
cm load config reg <= '1';

--Start reading monitoring status
when CMD START MONITORING =>
start monitoring reg <= '1';
when CMD GET MONITORING =>
read monitoring reg <= 'l1';
when CMD SET SWITCHES =>
switches reg <= data in reg (31 downto 24);
when CMD READ CROC =>

read croc_reg <= 'l';
when CMD GET CROC =>
get croc reg <= 'l';

when others =>
--Insert error generating here, maybe

end case;
--Send an acknowledgement of the command
send cmd ack <= '1';

cmd to ack <= data_in reg;
reply iface <= source iface reg;
reply addr <= data_addr reg;

-- Reads the values from the Set switches command

if data in reg(23 downto 0) = CMD GET SWITCHES then
cmd to ack (31 downto 24) <= switches reg;
end 1if;

-—-For two word commands
if second word then
if prev_cmd = CMD EPCQ SETA then
send cmd_ack <= '0";
epcgio address reg <= data in reg;
elsif prev _cmd = CMD RU ADDRESS then
send cmd ack <='0";
ru_address reg <= data in reg(23 downto 0);
elsif prev_cmd = CMD SET IP then
send cmd ack <="'0";
if (data in reg /= chip id 1sb) then
board dag id <= X"00";
end if;
end if;
second word <= false;
end if;

end if;
end if;

end process;

end architecture vhdl rtl;

