

$\begin{array}{l} Improving \ M_{bb} \ resolution \\ in \ ZH \longrightarrow IIbb \end{array}$

Two staged approach : b-specific jet corrections followed by jet corrections with MET

Jet energy resolution = RMS[(pT,genB - pT,recoJet)/pT,genB]

- p_{T,genB} = p_T of the generator level b-quark
- p_{T,recoJet} = p_T of the reconstructed jet
- Soal: provide an estimate of the true b-quark energy and correct the reconstructed jet energy
- A correction function is computed in order to approximate the reconstructed b-jet energy to the MC generated b-quark energy
- The method exploits Multi-Layer Perceptron Neural Networks (implemented in ROOT) in two steps:
 - b-specific correction
 - MET-specific correction

>A first Neural Network is trained using:

• b-specific input variables (Secondary Vertex)

tracks in the SV, p_T of the leading track vtx-mass, vtx- p_T - mass and p_T of the SV vtx-2dL, vtx-2deL - 2D flight lenght and error of the SV

jet kinematic input variables

jet energy and p_T (CMS standard correction)

> Target a scale factor: SF = pT,genB/pT,recoJet

> Output: correction factor which is applied to the jet and MET

- b-corrected jet_{1,2} energy and p_T
- b-corrected MET

> BFGS method with 1 hidden layer of 16 neurons for 1000 epochs

On a sample of b-tagged jets from Higgs candidate matching the generator level b-quarks, chosen from a MC of ZIIHbb events @ M_H = 125GeV

> jet-quark match
$$\rightarrow dR = \sqrt{(\phi_{genB} - \phi_{jet})^2 + (\eta_{genB} - \eta_{jet})^2} < 0.5$$

b-correction: input variables

Physik-Institut

b-correction: input variables

Physik-Institut

>A second Neural Network is trained using

MET-specific input variables

b-corrected MET, MET phi, MET-jet_{1,2} projection

jet kinematic input variables

b-corrected jet_{1,2} energy and p_T , jet_{1,2} eta, jet_{1,2} phi

- PU correction
 - **#** Primary Vertices

- > Target two scale factors (one for each jet): SF = pT,genB/pT,recoJet (b-corr)
- >Outputs: two correction factors which are applied to the jets

b+MET-corrected jet_{1,2} energy and p_T

>BFGS method with 1 hidden layer of 22 neurons for 1000 epochs

On a sample of b-tagged jets matching with generator level b-quarks chosen from a MC of ZIIHbb events @ M_H = 125GeV

MET-correction: input variables

Physik-Institut

Zurich

University of

>Jets selection:

- 2 b-tagged jets from the Higgs candidate with pT > 20 GeV, dR < 0.5
- no selection applied on additional jets

Scale factors vs # SV tracks

Scale factors vs vertex 2dL

Scale factors vs vertex pT

Scale factors vs vertex mass

Scale factors vs \triangle Phi(MET,j)

Scale factors vs jet eta

Scale factors vs MET

Scale factors vs jet pT

Scale factors vs b-corr jet pT

Scale factors vs b+MET-corr jet pT

NN output vs **APhi(j,j**)

NN b-specific correction vs $\Delta \phi$. NN[°] ontbrit eading jet sub-leading jet 1.3 **NNb** output 1.2 1.1 0.9F 0.80 350 ∆¢_{ji} [deg] 50 100 150 200 250 300 NN MET-specific correction vs $\Delta \phi$ NN_{MET} output 1.4 leading jet NNMET output 1.3 sub-leading jet 1.2 1.1 0.9 0.8 300 350 ∆¢_{ii} [deg] 50 100 150 200 250

NN output vs MET

06.05.2013

NN output vs vertex mass

NN_b output

NNMET output

Leading jet energy resolution improved

- from ~23% to ~25% after NNb correction
- from ~23% to ~21% after NN_{MET} correction

Jets selection:

- 2 b-tagged jets from the Higgs candidate with pT > 20 GeV, dR_{genB,j} < 0.5
- no selection applied on additional jets

Sub-leading jet energy resolution improved

- from ~25.2% to ~24.6% after NNb correction
- from ~25% to ~22% after NN_{MET} correction

>Jets selection:

- 2 b-tagged jets from the Higgs candidate with pT > 20 GeV, dR < 0.5
- no selection applied on additional jets

Reconstructed dijet invariant mass

Physik-Institut

Zurich

University of

Reconstructed dijet invariant mass

Physik-Institut

Zurich

University of

>NN_{MET} trained again on a selected sample of events

- jets with pT > 20 GeV, eta < 2.5</p>
- CSV I-j > 0.9, CSV sI-j > 0.5
- # additional jets = 0, # fat jets = 0

> Further improvement of the Higgs mass resolution from ~8% to ~7%

Higgs dijet invariant mass resolution for H p_T > 150 GeV

- 8.5% before correction
- 9.5% after b-correction
- 8.7% after MET-correction

Higgs dijet invariant mass resolution for H pT > 200 GeV

- 9.6% before correction
- 8.5% after b-correction
- 9.9% after MET-correction

Reconstructed dijet invariant mass

Physik-Institut

Zurich^{⊍zн}

University of

- A bias of the jet-energy correction with respect to a particular Higgs mass in the training is avoided training the NNs @M_H = 110-135 GeV (5 GeV steps)
- Then the NN correction function is evaluated on each of the Higgs boson masses in the range
- Resolution improved from the standard-corrected jets result of ~13% to the NNs-corrected jets result of ~9% (~30%)

