

$\begin{array}{l} Improving \ M_{bb} \ resolution \\ in \ ZH \longrightarrow IIbb \end{array}$

Two staged approach : b-specific jet corrections followed by jet corrections with MET

Jennifer Ngadiuba Clemens Lange Benjamin Kilminster

> VHbb meeting 19th April 2013 CERN

The Higgs dijet invariant mass is the most effective discriminant to distinguish the Higgs signal from backgrounds

- Higgs-signal \rightarrow Gaussian-like resonance
- Backgrounds \rightarrow exponential-like smoothly falling

Improving the jet energy resolution improves the Higgs dijet invariant mass resolution

- Jet energy resolution = RMS[(pT,genB pT,recoJet)/pT,recoJet]
 - p_{T,genB} = p_T of the generator level b-quark
 - p_{T,recoJet} = p_T of the reconstructed jet

Soal: provide an estimate of the true b-quark energy and correct the reconstructed jet energy

CDF implemented a method based on Neural Network (ROOT) (arxiv.org/pdf/ 1107.3026.pdf)

- a correction function is computed using specific properties of b-jets as input variables
- target the p_T of the generator level b-quark
- the Higgs dijet invariant mass resolution improved from ~15% to ~11% (~27%) in WInHbb

Similar regression implemented for CMS (<u>Niklas Mohr talk for Hbb meeting</u>)

- BDT regression implemented in TMVA
- Input variables: b-specific properties, jet kinematic and MET-related information
- target generator level jet-pT
- the two jets are kept uncorrelated in the training
- Higgs dijet invariant mass resolution improvement of ~20% in ZIIHbb

Large lifetime of B-hadrons (~1.5ps)

- observable flight distance
- secondary vertex displaced from the primary vertex
- Large multiplicity of charged particles in the final state

Large mass

- charged particle tracks incompatible with the primary vertex
- high impact parameter

Goal:

improving individual b-jet energy measurement and resolution exploiting the correlation between the b-specific properties and the b-jet energies

University of Missing Transverse Energy

Physik-Institut

Zurich

- Presence of Missing Transverse Energy
 - calorimeter resolution

mis-measurement of the b-jet energy

presence of neutrino in the jet

>The MET direction points in the direction of the jet that is more likely mis-measured

Goal:

exploit the MET value and direction compared to the jet to correct the reconstructed jet energies

- A correction function is computed in order to approximate the reconstructed b-jet energy to the MC generated b-quark energy
- The method exploits Multi-Layer Perceptron Neural Networks (implemented in ROOT) in two steps:
 - A first NN is trained using
 - b-specific input variables (Secondary Vertex)

tracks in the SV of the jet_{1,2}, p_T of the lead track in the jet_{1,2} vtx-mass, vtx-pT - mass and pT of the SV of the jet_{1,2} vtx-3dL, vtx-3deL - 3D flight lenght and error of the SV of the jet_{1,2}

- jet kinematic input variables:

standard corrected jet_{1,2} energy and p_{T}

- Target two scale factors (one for each jet): SF = pT,genB/pT,recoJet
- \bullet Outputs: two correction factors which are applied to the jets \rightarrow NNb-corrected jets energy, jets pT, MET

pT of the generator level

b-quark: NEW in CMS!

- BFGS method with 1 hidden layer of 32 neurons for 1000 epochs
- On a sample of b-tagged jets from Higgs candidate matching the generator level b-quarks, chosen from a MC of ZIIHbb events
 @ M_H = 125GeV

• jet-quark match
$$\rightarrow dR = \sqrt{(\phi_{genB} - \phi_{jet})^2 + (\eta_{genB} - \eta_{jet})^2} < 0.5$$

2.

- A second NN is trained using
 - MET input variables

b-corrected MET, MET phi, MET-jet_{1,2} projection

- jet kinematic input variables:

11 input variables

NNb corrected jet_{1,2} energy and p_T , jet_{1,2} eta, jet_{1,2} phi

- PU correction:
 - # Primary vertices
- Target two scale factors (one for each jet): SF = pT,genB/PT,recoJet (NNb-corr)
- Outputs: 2correction factors which are applied to the jets $\rightarrow NN_b+NN_{MET}$ - corrected jets energy and jets p_T
- BFGS method with 1 hidden layer of 22 neurons for 1000 epochs
- On a sample of b-tagged jets matching with generator level b-quarks chosen from a MC of ZIIHbb events @ M_H = 125GeV

>Jets selection:

- 2 b-tagged jets from the Higgs candidate with pT > 20 GeV, dR < 0.5
- no selection applied on additional jets

Scale factors vs DPhi(MET,j)

Scale factors vs jet eta

Scale factors vs MET

leading jet

Scale factors vs # SV tracks

Scale factors vs vertex 3dL

Jennifer Ngadiuba

Scale factors vs vertex pT

Scale factors vs vertex mass

Leading jet energy resolution improved

- from ~22% to ~20% after NNb correction
- from ~20% to ~17% after NN_{MET} correction

>Jets selection:

- 2 b-tagged jets from the Higgs candidate with pT > 20 GeV, dR < 0.5
- no selection applied on additional jets

soft jet energy resolution

Sub-leading jet energy resolution improved

- from ~31% to ~26% after NN_b correction
- from ~26% to ~25% after NN_{MET} correction

> Jets selection:

- 2 b-tagged jets from the Higgs candidate with pT > 20 GeV, dR < 0.5
- no selection applied on additional jets

Zurich

- >Leptons selection
 - pT > 20 GeV
 - |eta| < 2.5
 - # additional leps = 0

- > Jets selection
 - pT > 20 GeV
 - |eta| < 2.5
 - CSV I-j > 0.9
 - CSV sl-j > 0.5
 - # additional jets = 0
 - # fat jets = 0

Higgs dijet invariant mass resolution improved

- from ~13% to ~10% after NN_b correction
- from ~10% to ~9% after NNMFT correction

Reconstructed dijet invariant mass

Physik-Institut

Zurich^{⊍zн}

University of

- A bias of the jet-energy correction with respect to a particular Higgs mass in the training is avoided training the NNs @M_H = 110-135 GeV (5 GeV steps)
- Then the NN correction function is evaluated on each of the Higgs boson masses in the range
- Resolution improved from the standard-corrected jets result of ~13% to the NNs-corrected jets result of ~9% (~30%)

NNMET trained again on a sample of events where no additional jets are found apart from the Higgs candidate jets

• further improvement of the Higgs mass resolution from ~9% to ~8%

Physik-Institut

>Used new approach to perform two-stage jet energy correction

- b-specific corrections on jet-by-jet basis
- MET-specific corrections on event-by-event basis
- Maintains correlations between MET and both jets

> Obtained improvement in M_{jj} resolution to 8-9%

Some additional studies to do

Tests of background sculpting

Look forward to contributing to Hbb group !