{{ latex:tikz:jet_top_resolved.png ? 0x1000 }}
{{ latex:tikz:jet_top_merged_partial.png ? 0x1000 }}
\\ \\ \\ \\ \\
{{ latex:tikz:jet_top_merged_full.png ? 0x1000 }}
Jet cones for top quark reconstruction. For more, please visit https://tikz.net/tag/jet/.
% Author: Izaak Neutelings (May 2021)
% Description: hadronic top quark jet
\documentclass[border=3pt,tikz]{standalone}
\usepackage{amsmath}
\usepackage{physics}
\usepackage{xcolor}
\usetikzlibrary{calc}
\usetikzlibrary{math} % for \tikzmath
\tikzset{>=latex} % for LaTeX arrow head
\usetikzlibrary{decorations.pathreplacing} % for curly braces
\colorlet{myblue}{blue!70!black}
\colorlet{mydarkblue}{blue!40!black}
\colorlet{mygreen}{green!40!black}
\colorlet{myred}{red!65!black}
\tikzstyle{vector}=[->,very thick,myblue,line cap=round]
\tikzstyle{ptmiss}=[->,dashed,thick,myred,line cap=round]
\tikzstyle{cone}=[thin,blue!50!black,fill=blue!50!black!30] %,fill opacity=0.8
\tikzstyle{conebase}=[cone,fill=blue!50!black!50] %,fill opacity=0.8
\newcommand\jetcone[5][blue]{{
\pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}
\edef\ang{#4/2}
\edef\e{#5}
\edef\vang{\pgfmathresult} % angle of vector OV
\tikzmath{
coordinate \C;
\C = (#2)-(#3);
\x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P
\y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P
\a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius
\b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius
\angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse
}
\coordinate (tmpL) at ($(#3)-(\vang:\x pt)+(\vang+90:\y pt)$); % tangency
\draw[thin,#1!40!black,fill=#1!50!black!80,rotate=\vang]
(#3) ellipse({\a pt} and {\b pt});
\draw[thin,#1!40!black,fill=#1!80!black!40,rotate=\vang]
(tmpL) arc(180-\angb:180+\angb:{\a pt} and {\b pt})
-- ($(#2)+(\vang:0.018)$) -- cycle;
}}
\begin{document}
% RESOLVED TOP JETS
\def\R{2.5}
\begin{tikzpicture}
\coordinate (O) at (0,0);
\coordinate (BJ) at ( 65:1.1*\R); % b jet 1
\coordinate (J1) at ( 15:1.0*\R); % q jet 1
\coordinate (J2) at (-20:1.0*\R); % q jet 2
\jetcone[green!80!black]{O}{BJ}{14}{0.10}
\jetcone{O}{J1}{16}{0.08}
\jetcone{O}{J2}{16}{0.10}
\node[green!50!black] at (65:1.24*\R) {b};
\node[blue!80!black,right] at (-5:1.00*\R) {$\mathrm{W} \to qq$};
\end{tikzpicture}
% BOOSTED TOP JETS, partially merged
\begin{tikzpicture}
\edef\ang{28}
\edef\e{0.05}
\coordinate (O) at (0,0);
\coordinate (BJ) at ( 65:1.1*\R); % b jet 1
\coordinate (J1) at ( 12:1.0*\R); % q jet 1
\coordinate (J2) at (-12:1.0*\R); % q jet 2
\coordinate (M) at (0:0.85*\R); % merged
\edef\vang{\pgfmathresult} % angle of vector OV
\tikzmath{
coordinate \C;
\C = (O)-(M);
\x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P
\y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P
\a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius
\b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius
\angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse
}
\coordinate (ML) at ($(M)+(\vang-180:\x pt)+(\vang+90:\y pt)$); % tangency
% JETS
\draw[thin,red!40!black,fill=red!70!black!60,rotate=\vang] % base
(M) ellipse({\a pt} and {\b pt});
\jetcone[green!80!black]{O}{BJ}{14}{0.10}
\jetcone{O}{J1}{16}{0.08}
\jetcone{O}{J2}{16}{0.10}
\draw[thin,red!40!black,fill=red!90!black!40,fill opacity=0.9,rotate=\vang]
(ML) arc(180-\angb:180+\angb:{\a pt} and {\b pt})
-- ($(O)-(\vang:0.03)$) -- cycle;
\node[green!50!black] at (65:1.24*\R) {b};
\node[blue!80!black,right] at (0:1.05*\R) {$\mathrm{W} \to qq$};
\end{tikzpicture}
% BOOSTED TOP JETS, fully merged
\begin{tikzpicture}
\edef\ang{35}
\edef\e{0.05}
\coordinate (O) at (0,0);
\coordinate (BJ) at ( 31:1.15*\R); % b jet 1
\coordinate (J1) at ( 9:1.00*\R); % q jet 1
\coordinate (J2) at (-11:1.00*\R); % q jet 2
\coordinate (M) at (13:0.80*\R); % merged
\edef\vang{\pgfmathresult} % angle of vector OV
\tikzmath{
coordinate \C;
\C = (O)-(M);
\x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P
\y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P
\a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius
\b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius
\angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse
}
\coordinate (ML) at ($(M)+(\vang-180:\x pt)+(\vang+90:\y pt)$); % tangency
% JETS
\draw[thin,red!40!black,fill=red!70!black!60,rotate=\vang] % base
(M) ellipse({\a pt} and {\b pt});
\jetcone[green!80!black]{O}{BJ}{14}{0.10}
\jetcone{O}{J1}{16}{0.08}
\jetcone{O}{J2}{16}{0.10}
\draw[thin,red!40!black,fill=red!90!black!40,fill opacity=0.9,rotate=\vang]
(ML) arc(180-\angb:180+\angb:{\a pt} and {\b pt})
-- ($(O)-(\vang:0.03)$) -- cycle;
\node[green!50!black] at (31:1.29*\R) {b};
\node[blue!80!black,right] at (0:1.05*\R) {$\mathrm{W} \to qq$};
\end{tikzpicture}
\end{document}