{{ latex:tikz:jet_top_resolved.png ? 0x1000 }} {{ latex:tikz:jet_top_merged_partial.png ? 0x1000 }} \\ \\ \\ \\ \\ {{ latex:tikz:jet_top_merged_full.png ? 0x1000 }} Jet cones for top quark reconstruction. For more, please visit https://tikz.net/tag/jet/. % Author: Izaak Neutelings (May 2021) % Description: hadronic top quark jet \documentclass[border=3pt,tikz]{standalone} \usepackage{amsmath} \usepackage{physics} \usepackage{xcolor} \usetikzlibrary{calc} \usetikzlibrary{math} % for \tikzmath \tikzset{>=latex} % for LaTeX arrow head \usetikzlibrary{decorations.pathreplacing} % for curly braces \colorlet{myblue}{blue!70!black} \colorlet{mydarkblue}{blue!40!black} \colorlet{mygreen}{green!40!black} \colorlet{myred}{red!65!black} \tikzstyle{vector}=[->,very thick,myblue,line cap=round] \tikzstyle{ptmiss}=[->,dashed,thick,myred,line cap=round] \tikzstyle{cone}=[thin,blue!50!black,fill=blue!50!black!30] %,fill opacity=0.8 \tikzstyle{conebase}=[cone,fill=blue!50!black!50] %,fill opacity=0.8 \newcommand\jetcone[5][blue]{{ \pgfmathanglebetweenpoints{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}} \edef\ang{#4/2} \edef\e{#5} \edef\vang{\pgfmathresult} % angle of vector OV \tikzmath{ coordinate \C; \C = (#2)-(#3); \x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P \y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P \a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius \b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius \angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse } \coordinate (tmpL) at ($(#3)-(\vang:\x pt)+(\vang+90:\y pt)$); % tangency \draw[thin,#1!40!black,fill=#1!50!black!80,rotate=\vang] (#3) ellipse({\a pt} and {\b pt}); \draw[thin,#1!40!black,fill=#1!80!black!40,rotate=\vang] (tmpL) arc(180-\angb:180+\angb:{\a pt} and {\b pt}) -- ($(#2)+(\vang:0.018)$) -- cycle; }} \begin{document} % RESOLVED TOP JETS \def\R{2.5} \begin{tikzpicture} \coordinate (O) at (0,0); \coordinate (BJ) at ( 65:1.1*\R); % b jet 1 \coordinate (J1) at ( 15:1.0*\R); % q jet 1 \coordinate (J2) at (-20:1.0*\R); % q jet 2 \jetcone[green!80!black]{O}{BJ}{14}{0.10} \jetcone{O}{J1}{16}{0.08} \jetcone{O}{J2}{16}{0.10} \node[green!50!black] at (65:1.24*\R) {b}; \node[blue!80!black,right] at (-5:1.00*\R) {$\mathrm{W} \to qq$}; \end{tikzpicture} % BOOSTED TOP JETS, partially merged \begin{tikzpicture} \edef\ang{28} \edef\e{0.05} \coordinate (O) at (0,0); \coordinate (BJ) at ( 65:1.1*\R); % b jet 1 \coordinate (J1) at ( 12:1.0*\R); % q jet 1 \coordinate (J2) at (-12:1.0*\R); % q jet 2 \coordinate (M) at (0:0.85*\R); % merged \edef\vang{\pgfmathresult} % angle of vector OV \tikzmath{ coordinate \C; \C = (O)-(M); \x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P \y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P \a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius \b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius \angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse } \coordinate (ML) at ($(M)+(\vang-180:\x pt)+(\vang+90:\y pt)$); % tangency % JETS \draw[thin,red!40!black,fill=red!70!black!60,rotate=\vang] % base (M) ellipse({\a pt} and {\b pt}); \jetcone[green!80!black]{O}{BJ}{14}{0.10} \jetcone{O}{J1}{16}{0.08} \jetcone{O}{J2}{16}{0.10} \draw[thin,red!40!black,fill=red!90!black!40,fill opacity=0.9,rotate=\vang] (ML) arc(180-\angb:180+\angb:{\a pt} and {\b pt}) -- ($(O)-(\vang:0.03)$) -- cycle; \node[green!50!black] at (65:1.24*\R) {b}; \node[blue!80!black,right] at (0:1.05*\R) {$\mathrm{W} \to qq$}; \end{tikzpicture} % BOOSTED TOP JETS, fully merged \begin{tikzpicture} \edef\ang{35} \edef\e{0.05} \coordinate (O) at (0,0); \coordinate (BJ) at ( 31:1.15*\R); % b jet 1 \coordinate (J1) at ( 9:1.00*\R); % q jet 1 \coordinate (J2) at (-11:1.00*\R); % q jet 2 \coordinate (M) at (13:0.80*\R); % merged \edef\vang{\pgfmathresult} % angle of vector OV \tikzmath{ coordinate \C; \C = (O)-(M); \x = veclen(\Cx,\Cy)*\e*sin(\ang)^2; % x coordinate P \y = tan(\ang)*(veclen(\Cx,\Cy)-\x); % y coordinate P \a = veclen(\Cx,\Cy)*sqrt(\e)*sin(\ang); % vertical radius \b = veclen(\Cx,\Cy)*tan(\ang)*sqrt(1-\e*sin(\ang)^2); % horizontal radius \angb = acos(sqrt(\e)*sin(\ang)); % angle of P in ellipse } \coordinate (ML) at ($(M)+(\vang-180:\x pt)+(\vang+90:\y pt)$); % tangency % JETS \draw[thin,red!40!black,fill=red!70!black!60,rotate=\vang] % base (M) ellipse({\a pt} and {\b pt}); \jetcone[green!80!black]{O}{BJ}{14}{0.10} \jetcone{O}{J1}{16}{0.08} \jetcone{O}{J2}{16}{0.10} \draw[thin,red!40!black,fill=red!90!black!40,fill opacity=0.9,rotate=\vang] (ML) arc(180-\angb:180+\angb:{\a pt} and {\b pt}) -- ($(O)-(\vang:0.03)$) -- cycle; \node[green!50!black] at (31:1.29*\R) {b}; \node[blue!80!black,right] at (0:1.05*\R) {$\mathrm{W} \to qq$}; \end{tikzpicture} \end{document}