% Author: Izaak Neutelings (July, 2017) \documentclass{article} \usepackage{amsmath} % for \dfrac \usepackage{tikz} \tikzset{>=latex} % for LaTeX arrow head \usepackage{pgfplots} % for the axis environment \usetikzlibrary{calc} % to do arithmetic with coordinates \usetikzlibrary{angles,quotes} % for pic % colors \definecolor{mylightgrey}{RGB}{230,230,230} \definecolor{mygrey}{RGB}{190,190,190} \definecolor{mydarkgrey}{RGB}{110,110,110} \definecolor{mygreen}{RGB}{120,220,160} \definecolor{mydarkgreen}{RGB}{60,120,60} \definecolor{myverydarkgreen}{RGB}{20,60,20} \definecolor{mydarkred}{RGB}{140,40,40} % mark right angle \newcommand{\MarkRightAngle}[4][1.5mm] {\coordinate (tempa) at ($(#3)!#1!(#2)$); \coordinate (tempb) at ($(#3)!#1!(#4)$); \coordinate (tempc) at ($(tempa)!0.5!(tempb)$);%midpoint \draw (tempa) -- ($(#3)!2!(tempc)$) -- (tempb); } % split figures into pages \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{1pt}% \begin{document} % RUTHERFORD SCATTERING - hyperbola orbit \begin{tikzpicture}[scale=1] % limits & parameters \def\xa{-2.4} \def\xb{ 4} \def\ya{-4} \def\yb{ 4} \def\tmax{2.1} \def\a{1.3} \def\b{1} \def\c{{sqrt(\a^2+\b^2)}} \def\N{100} % number of points % coordinates \coordinate (O) at ( 0, 0 ); \coordinate (A) at ( \a, 0 ); \coordinate (F1) at ( {sqrt(\a^2+\b^2)}, 0 ); \coordinate (F2) at ( -{sqrt(\a^2+\b^2)}, 0 ); \coordinate (P) at ( -{\a^2/sqrt(\a^2+\b^2)}, -{\a*\b/sqrt(\a^2+\b^2)} ); \coordinate (P1) at (\xb*\a, \yb*\b); \coordinate (P2) at (\xb*\a,-\yb*\b); \coordinate (yshift) at (0,0.4); % axes & asymptotes \draw[mygrey] % x axis (\xa*\a,0) -- (\xb*\a,0); \draw[dashed,mydarkgrey] (-\xb*\a*0.45, \ya*\b*0.45) -- (\xb*\a, \yb*\b) (-\xb*\a*0.45,-\ya*\b*0.45) -- (\xb*\a,-\yb*\b); % arrows \def\vtheta{30} \def\vradius{0.8} \draw[->,myverydarkgreen,shift=($(P1)-(yshift)$),scale=0.6] (0,0) -- (-\a,-\b) node[midway,below right=0pt] {${v}_i$}; \draw[->,myverydarkgreen,shift=($(P2)+(yshift)$),scale=0.6] (-\a,\b) -- (0,0) node[midway,above right=-2pt] {${v}_f$}; \draw[->,myverydarkgreen] (\a+0.35,{\vradius*sin(\vtheta)}) arc (180-\vtheta:180+\vtheta+10:\vradius) node[above right=0pt] {$v^*$}; % angles \MarkRightAngle{F2}{P}{O} \pic [draw,myverydarkgreen,"$\theta$",angle radius=12,angle eccentricity=1.4] {angle = F2--O--P}; \pic [draw,below,angle radius=16,angle eccentricity=1.4] {angle = P2--O--P1}; \node[right=1pt,below=-2pt,myverydarkgreen] at ($(O)!0.5!(A)$) {\small$\phi$}; % hyperbola \draw[color=mylightgrey,line width=0.5,samples=\N,variable=\t,domain=-\tmax*0.58:\tmax*0.58] % left plot({-\a*cosh(\t)},{\b*sinh(\t)}); \draw[color=mydarkgreen,line width=1,samples=\N,variable=\t,domain=-\tmax:\tmax] % right plot({ \a*cosh(\t)},{\b*sinh(\t)}); % {exp(\y)+exp(-\y) % nodes \draw[myverydarkgreen] (F2) -- (P) node[midway,below left=1pt,] {$b$}; \fill[radius=1.5pt] (A) circle node[above left=0pt] {A} (O) circle node[above=2pt] {O}; \fill[radius=2.5pt,mydarkred] (F2) circle node[above=2pt] {N}; \draw[] %(O) -- (F2) node[left=1pt,above=0pt] at ($(F2)!0.5!(O)$) {$c$} node[below right] at ($(P)!0.5!(O)$) {$a$}; % alpha particle \draw[radius=1pt,mydarkgreen,fill] ({ \a*cosh(\tmax*1.02)},{\b*sinh(\tmax*1.02)}) circle node[above right=0pt] {$\alpha$}; \end{tikzpicture} % RUTHERFORD SCATTERING - hyperbolic orbits with different impact parameters \begin{tikzpicture}[scale=1] % limits & parameters \def\xa{-35} \def\xb{ 55} \def\ya{ -1} \def\yb{ 55} \def\tmax{4.5} \def\N{50} % number of points % use axes to get square box which cuts of the long curves \begin{axis}[ xmin=\xa,xmax=\xb, ymin=\ya,ymax=\yb, hide x axis, hide y axis, xticklabels={,,},yticklabels={,,} axis line style={draw=none}, tick style={draw=none} ] % loop over multiples \u of impact parameters \b=\u*0.25 \def\a{1} \foreach \u in {1,3,6,10,15,21,28,38}{ \def\b{\u*0.25} \def\c{sqrt(\a^2+\b^2)} % hyperbola \addplot[color=mydarkgreen,line width=0.5,samples=\N,smooth,variable=\t,domain=-\tmax:\tmax] ({ \a/\c*(-\a*cosh(\t)-\c) + \b/\c*\b*sinh(\t) }, { -\b/\c*(-\a*cosh(\t)-\c) + \a/\c*\b*sinh(\t) }); } % nucleus \addplot[mydarkred,mark=*,mark size=2pt,mark options=solid] coordinates {(0,0)}; \end{axis} \end{tikzpicture} \end{document}